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Abstract 

A simple idea of RGB to spectral image conversion is 
proposed. A spectral reflectance with the closest 
colorimetric value to that of RGB pixel is picked up from 
the spectral color palette and embedded in each pixel of 
RGB image. SVD (Singular Value Decomposition) is 
applied to compress the high-resolution spectral image. 

Spectral image data are rearranged to 36 pixels × 36 
spectra sub-block so that we could make use of strong 
correlations in both spatial and spectral. The spectral image 
could be very well reproduced from a small number of 
singular values by SVD. Although a transformed image has 
not the real world spectra but palette-based pseudo-spectra, 
the proposed method could be applied to simulate the color 
appearances for a given set of ink and paper media under 
the different illuminants, and to estimate how much the 
huge spectral image data could be compressed. The paper 
discusses the color reproducibility by SVD compression 
and introduces the estimated color appearances for inkjet 
prints under the different fluorescent lamps. 

1. Introduction 

A multi-spectral image carries the raw color information 
essential for estimating color under different illuminants. 

A variety of multi-spectral image capture schemes1-4 
have been proposed. It needs expensive and slow 
measurements to catch the spectral images with high 
spectral and spatial resolutions. Since spectral information 
of natural objects is widely applied for remote sensing, 
printing, medical, or artistic imaging, alternative 
technologies for preserving the spectral data are much 
interested. Estimation of reflectance spectra from reduced 
low-dimensions has been attempted to approach this 
requirement.5-10 K-L transform or PCA provided a 
mathematical solution to this problem. However, these 
methods still need multi-band sensors more than three. This 
paper proposes a simple but novel method to transform the 
conventional RGB tri-color images into spectral images 
with high spatial and spectral resolutions, where the RGB 
pixel is replaced by the closest spectral chip in palette.11 

Each spectral chip is composed of spectral reflectance in 
380-730 nm by 10 nm step. Although the transformed 
spectral image is not from the real world scene but carries 
the precise actual spectra just as painted by real palette 
media such as ink and paper. Because the created spectral 
image is highly correlated both spatially and spectrally, it is 
compressed by employing Singular Value Decomposition 
(SVD). Finally the restored spectral image from 
compressed SVD data is applied for the color appearance 
simulation on inkjet print under the different illuminants. 

2. Embedding Spectrum in RGB Pixel 

Figure 1 shows the overview of proposed system. First, a 
RGB or XYZ tri-color image is transformed into L*a*b* 
image and a spectral palette corresponding to the L*a*b* 
values is generated as the LUT. Each pixel in source image 
is replaced by the spectral chip with L*a*b* value closest 
to that of pixel. That is, the spectrum k is embedded in pixel 
i by choosing the chip j=k to minimize the color difference 
between the pixel i and spectral chips j=1,2,…, J as 
follows.  
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For example, RGB image with K × L pixels is 

converted into the spectral image with KL × 36 channels.  
To create the high precision spectral images, sufficient 

number of spectral chips is necessary, but it is difficult to 
measure the huge number of full color chips. So, the 
measured spectral pallets data are interpolated in practice. 

A test image in Fig. 2 (a) with the color distribution in 
(b) was converted into spectral image (d), by looking up the 
inkjet spectral palette in (c). The image (d) was created by 
directly looking up the closest spectrum from the 1331 
basic inkjet spectral palette. The replaced color pixels 
obviously lack the gray levels because of insufficient 
number of spectral chips in palette.  
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Figure 1. Overview of RGB to Spectral Image Conversion System using Spectral Palette 

 

 

Figure 2. Spectral image conversion by inkjet palette 

3 Interpolation of Spectral Color Palette 

A basic spectral color pallet was created by measuring the 
spectral reflectance for N=113=1331 CMY color chips 
printed by Epson PMC800 inkjet printer on coated paper. 
Each color chip carries 36 spectra in 380~730 nm by 10 nm 
step. The lack of chips in palette causes undesirable artifacts 
in tonal reproduction. This problem is solved by increasing 
the printed number of chips or by spectral interpolation. 
Figure 3 illustrates a basic idea of spectral interpolation. A 
linear spectral interpolation between i-th and (i+1)-th 
spectral chips makes the new intermediate chip as follows.  
Letting the multi-spectral vector of j-th chip be 

t
jjjj C,,C,C )]()()([ 3621 λλλ ��=C   (2) 

The intermediate spectrum Cj (d) at distance ratio d 
from Cj and (1-d) from Cj+1 is calculated by 

( ) ( ) 1jjj dd1d ++−= CCC     (3) 

If the spectral interval between Cj and Cj+1  is divided 
by K (K is integer) discrete steps, the distance ratio d and 
new chip number jk at k-th position are given by 

( )
( ) K~1kfork1jKjk

K/1kd
=+−=
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   (4) 

 
Figure 3. Spectral interpolation 
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Denoting the interpolated vector be Cjk for Cj (d), each 
spectral element of new vector Cjk is calculated by  
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Thus j=1~J colors chips are increased to Jint as  

1)1( +−= JKJint      (6) 

Figure 4 shows an example of spectral images created 
by embedding the interpolated spectra in RGB image (a). 
Here (b), (c), and (d) show the converted images by J=1331 
basic pallet, Jint=5331(K=4) and Jint=10641(K=8). 
Interpolated palettes. (e), (f), and (g) show the color 
distributions of the corresponding palettes in CIELAB 
space. The images shown in (c) and (d) are clearly 
improved in the gradation as compared with (a). 

 
 

 

Figure 4. Gradation improvement by spectral interpolation 

4. Sub-Block Replacement of Spectra 

Because the converted spectral image has 12 times much 
data in comparison with original, the data is desirable to be 
compressed. In order to make use of spatial and spectral 
correlations, the source image was divided into sub-blocks 
by 6 x 6 pixels and each sub-block was rearranged into 2D 
array of 36 spectra × 36 pixels in Fig. 5. The rearranged 
spectral block is strongly correlated spatially and spectrally. 

5. Compression of Spectral Image by SVD 

The rearranged sub-block image is compressed by removing 
the redundancies based on SVD. The matrix data in sub-
block (m, n) is represented by 

N,2,1,n,M,2,1,m;
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where, rij denotes a spectral reflectance of i-th pixel at j-th 
wavelength: λ=380+10(j-1) nm. M and N are the block 
numbers in row and column of sub-blocks. 
  

 

 

Figure 5. Blocking and rearrangement of spectral image data  
 
The local spectral image Rmn in mn-th sub-block can be 

expressed by SVD as 

tmnmnmn
mn
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where, the columns of U mn and V mn are the eigenvectors of 
RmnRmn

t and Rmn

tRmn, and Λmn is 36 x 36 diagonal matrix 
containing the singular values of Rmn along its diagonal. 
Because U and V are orthogonal,  
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Here, a sub-block image R mn is approximated by  
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t
mnmnmnmn V̂ˆÛR̂ Λ≅      (10) 

That is, the 36 × 36 matrix Rmn can be restored from the 
small number of S (< 36) singular values mnΛ̂  with (λ1 ~λS) 
and the eigen vectors of 36×S mnÛ  and S×36 mnV̂  
matrices. 

 

Figure 6. Restored  reflectance  from only two SVD parameters 
(S=2) 

6. Experimental Results 

6.1 Reconstruction from Compressed SVD Image  
The spectral image was compressed using small 

number of SVD parameters and reconstructed. Figure 6 
(a)~(d) show the reproduced spectral reflectance from only 
two singular values λ1 and λ2 with corresponding eigen 
vectors. The dotted plots show the reproduction in 36 
wavelengths as compared with the original solid line. The 
complex spectral reflectance is almost well reconstructed in 
detail. The rms color difference was around ∆E*ab ≅5 or less 
for S≅2~3. 

6.2 Print Image Estimation Under the Different 
Illuminants 

The proposed method enables to simulate the 
appearance of color prints under the various illuminants as 
if printed with the same set of ink and paper used in palette 
without any expensive spectral camera. Figure 7 shows an 
example of predicted color reproductions under the four 
different fluorescent lamps. The spectral image was 
converted from sRGB image using Epson color inkjet 
spectral palette. 

 

 

Daylight Warm White 

D65 Cool White 

 

Figure 7. Inkjet color appearances under typical fluorescent 
lamps. 

7. Discussions and Conclusions 

An idea for embedding the spectral pallet in RGB pixels 
was proposed. SVD was useful to compress the local 
spectral sub-block image rearranged in 36 pixels × 36 
spectra by making use of strong correlations in both spatial 
and spectral. As a result, the multi-spectral image was 
restored from a few singular values in accurate. Although a 
created image has not the real world spectra but pallet-based 
pseudo-spectra, the proposed method is applied to simulate 
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the color appearances for different ink and paper sets under 
the various illuminants and to estimate how much the huge 
spectral image data could be compressed. Since the number 
of spectral chips is not enough, spectral interpolation could 
help to embed them in full-color RGB image. The reliability 
in linear spectral interpolation for limited number of 
spectral chips made by color ink sets or other materials 
should be evaluated in future works.  
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