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Abstract 

This paper reports the modeling of a given printhead with 
piezoelectric bend mode actuators. The model describes the 
electric, mechanical as well as the fluid dynamic 
characteristics of the printhead. The electric and mechanical 
parts of the piezoelectric bend mode actuator are described 
by conventional lumped elements which interact as 
constituent parts of a Kirchhoffian network. The complex 
three-dimensional fluid analysis is performed by a 
commercial computational fluid dynamics (CFD) free-
surface modeling package. The fluid structure coupling is 
realized by exchanging of data between the electro-
mechanical model and the fluid simulation tool for every 
numerical time step. 

The piezoelectric printhead has been computationally 
simulated to analyze the fluid flow dynamics and the jet 
forming process. Moreover inter-channel crosstalk caused 
by interconnected fluid channels of the printhead is studied. 
As a result, this paper discusses the fundamentals of the 
crosstalk problem and shows ways for crosstalk 
compensation methods based on optimized compensation 
drive pulses. 

Introduction 

Printheads have found extensive application in ink jet 
printing systems. Furthermore there is a growing demand 
for using the ink jet technology in a wider range of 
applications. For this reason a DOD printhead has been 
developed that can be run with not ink-based medias like 
waxes, oils, adhesives, fuels, lacquers etc. 

The basic description of the printhead with 
piezoelectric bend mode actuators has been given in a 
patent.1 An improved version of the printhead has been 
presented by Kretschmer.2 In Kretschmers paper it was 
shown that the problems of the original type of printhead 
like crosstalk with neighboring channels, low working 
frequency etc. can be overcome by the use of a new 
multilayer piezoceramic material and by walls placed 
between the single bend mode actuators. This new design of 
the printhead is, however, quite difficult to manufacture and 
limits the number of nozzles per inch. This paper deals with 
the original design of the printhead without channel walls 
and discusses how to analyze and to solve the described 

problems, especially the negative effects of crosstalk by 
means of numerical simulations. 

Printhead Design 

The printhead design is based on three main components: 
the nozzle plate, the bend mode actuators and the chassis. 
The nozzle plate has a row of very small, precise nozzles 
with conical shape. An actuator is assigned to every nozzle. 
A flexible connector board supplies the actuators with the 
electric drive signals. This assembly is covered by the 
chassis that has the function of a fluid chamber to provide 
the actuators with fluid. Each of the actuators can be run 
independently from the remaining actuators. The bend 
mode actuators are fixed at one end. The nozzles are placed 
under the free ends of the actuators. 
 

 

Figure 1. Basic printhead components and assembly 

 
Figure 1 illustrates the components of the printhead. 

The printhead is a prototype that has been manufactured at 
the FGB, TU München. The printhead is the key component 
of a new solid freeform fabrication technology.3 This new 
technology can be used to fabricate physical objects directly 
from CAD data sources using the printhead to deposit 
droplets of wax. Since this wax has a high melting point the 
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printhead must be heated up to 130°C to melt the wax. 
Table 1 lists the basic technical data of the printhead. 

Table 1. Technical data of the printhead 
Number of nozzles 32 
Viscosity of the fluid 0.7 – 20 mPa s 
Temperature range 20 – 130 °C 
Nozzle pitch 50 dpi 
Nozzle diameter 50 µm 
Continuous frequency 5 kHz 
Supply voltage 55 V 

 

Drop Generation 

The drop generation is shown in Figure 2. After applying 
the drive pulse, the bend mode actuator deviates at its free 
end away from the nozzle plate, so the fluid can flow in the 
gap between the bend mode actuator and the nozzle plate. 
After switching off the pulse, the actuator relaxes rapidly 
towards the nozzle plate and forces the liquid through the 
nozzle. The resulting droplet moves perpendicularly away 
from the nozzle plate. Piezo bend mode actuators combine a 
high deflection with a high velocity of the actuator. Due to 
that it is possible to jet a wide range of fluids. 
 

 

Figure 2. Function principle of the DOD printhead 

 
Since the bend mode actuators are aligned very closely 

and the actuators are not decoupled by a constructive design 
feature like channel walls there is a very strong crosstalk 
between neighboring channels through the fluid. In our case 
crosstalk causes an unwanted drop generation at the 
adjoining channels although these adjacent channels are not 
fired (see Figure 3) as well as drop velocity and volume 
variations if two adjacent channels are fired. These effects 
lead to a bad printing and image quality and decrease the 
performance of the printhead. 

Figure 3. Only the left channel is fired but also the right channel 
ejects a droplet because of the crosstalk effect. 

Modeling 

Due to the complexity of the printhead, the system has to be 
separated into partitions. Based on a definition of 
Zienkiewicz,4 the model of the printhead consists of three 
coupled systems: a coupled electric and mechanical system 
that describes the actuator and the fluid system. Since there 
are strong interactions between the electric and mechanical 
system as well as between the mechanical system and the 
fluid, the resulting differential equations of the three 
systems can not be solved separately. 

 
Figure 4. Printhead described as a coupled system 

 
 
Experiments have shown that the piezoelectric bend 

mode actuator can be modeled by a quite simple equivalent 
network. Using electrical analogies it is possible to include 
the electric part as well as the mechanical part of the 
actuator within one network. The model consists of lumped 
elements which describe the electric and mechanical 
parameters. The complex three-dimensional fluid analysis is 
performed by the commercial computational fluid dynamics 
(CFD) package FLOW-3D. The coupling of the electro-
mechanical model and the fluid model is realized by 
exchanging the data between the two systems. 
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Actuator Model 

In order to study the dynamic response of the actuator when 
applying a driving signal, the oscillation of the actuator 
without surrounding fluid was measured with a laser 
vibrometer (see Figure 5). 
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Figure 5. Oscillation of the actuator without surrounding fluid 

 
The measurement demonstrates that the actuator can be 

regarded as a one-mass oscillator. On the electric side the 
piezo actuator is approximated as a electric capacitance. 
This results in a lumped parameter model of one single 
actuator as illustrated in Figure 6.  

 

Figure 6. Lumped parameter model of the piezo actuator (electro-
mechanical model) 

 
Every single bend mode actuator and thus the electro- 

mechanical part of the printhead is modeled as an 
equivalent electric circuit with lumped elements. The model 
consists of two parts. On the one hand, the electric part with 
the capacitor C, representing the electric capacitance of the 
piezo ceramic, the drive pulse voltage source u and the 
series resistance R. On the other hand, the mechanical part 
consisting of a one mass oscillator model with the mass mP, 
the stiffness cP and the damping dP. The coupling of the 
electric and mechanical part is realized by a gyrator that 
transforms the electric parameters current i and voltage uC 
into the mechanical parameters force F and velocity ν of the 
actuator using the equations: 

 v
y

i ⋅=
1  (1) 

 FyuC ⋅=  (2) 

The parameter y describes the coupling between 
electric and mechanical fields in the piezo ceramic. The 
force FP is the integrated pressure force of the fluid on the 
actuator. Force FP and velocity v  are also the coupling 
variables between the electro-mechanical system an the 
fluidic part. The presented Kirchhoffian network yield to a 
system of linear differential equations. All the parameters of 
the model are either given or are obtained by analyzing the 
dynamic response of the actuator on a drive pulse (see 
Figure 5). 

Fluid Model 

Crosstalk effects affect not only the first neighbors of a 
fired channel but also the second neighbors. As a 
consequence a three-dimensional flow region with five 
actuators has been defined in order to investigate the 
crosstalk behavior between the channels through the fluid. 
Two more fixed actuators with half width describe realistic 
boundary conditions on the left and right side of the flow 
region (see Figure 7).  

 
Figure 7. Three-dimensional flow region with five active actuators 
and two fixed actuators defining the boundary conditions 

 
The software package Flow-3D was chosen to analyze 

the fluid flow in the defined three-dimensional region. 
Flow-3D is capable of handling both a free surface which is 
necessary to simulate the drop formation process and 
moving obstacles that are used to define the deformable 
actuators. Each actuator consists of ten obstacles which 
deflect according to the lowest eigenmode of a single 
clamped beam, i.e. the obstacles move according to their 
position in the beam. This behavior of the actuator was 
experimentally corroborated.  

The parameters of the fluid (diethylsuccinate) that was 
used for validation tests in the real printhead are also used 
for the fluid model. 

The fluid structure interaction was realized by 
exchanging of data between the electro-mechanical model 
and the fluid simulation tool for every numerical time step. 
A staggered solution procedure5 was chosen to solve the 
coupled system. 
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Crosstalk Analysis and Compensation 

In a first step the phenomena of crosstalk is investigated. 
Different combinations of driven and passive channels are 
simulated and analyzed. In the normal case with one driven 
channel the jetted droplet has a velocity of v = 6.5 m/s. The 
two neighboring channels also eject droplets because of 
crosstalk effects with a velocity of v = 1.6 m/s. The second 
neighbors only show a slight oscillation of the fluid in the 
nozzle. This case is illustrated in Figure 8. 
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Figure 8. Crosstalk at the neighboring channels when the middle 
channel is driven and there is no compensation 

 
If two adjoining channels are driven, the velocity of the 

droplet increases to v = 9.5 m/s. If three neighboring 
channels are driven at the same time the velocity of the 
droplet in the middle is v = 12.8 m/s and the velocity of the 
remaining two droplets is v = 10.5 m/s. In both cases there 
are also droplets ejected at the non-driven channels because 
of crosstalk. Furthermore, the droplet volumes differ 
according to the number of adjacent driven channels. Since 
different velocities and volumes of the droplets lead to a 
poor printing quality these facts cannot be accepted. As a 
consequence, the channels of the printhead have to be fired 
in three groups. On the one hand, this avoids the problems 
of crosstalk between adjacent driven channels. On the other 
hand, there is only one case of crosstalk remaining that has 
to be considered – the case with one driven channel. 
Another negative consequence is that the driving frequency 
is decreasing. 

The analysis of the fluid in the neighboring nozzle of a 
driven channel shows a flow similar to the fluid flow in the 
nozzle of the driven channel (see Figure 9). This leads to 
the idea that the crosstalk can be reduced by applying a 
phase shifted compensations impulse at the neighboring 
channels. Consequently a parameter study was carried out 
that investigated three different phase shifted compensation 
pulses: 
- a single pulse with constant voltage and variable pulse 

width 
- a singe pulse with constant pulse width and variable 

voltage 
- a double pulse with constant voltage and variable 

pulse width 

-2

-1

0

1

0 50 100 150

Time [µs]

Ve
lo

ci
ty

 [m
/s

]

Fluid flow,  driven channel

Fluid flow,  adjoining channel

 

Figure 9. Fluid velocity in the nozzles of the driven and the 
adjoining non-driven channel 

 
 
Another important parameter that has to be consider is 

the delay between the driving pulse and the compensation 
pulse. 

The results of the parameter study is that there is a 
sufficient compensation in only one case with the double 
pulse. In the other two cases there is still an ejection of 
droplets at the neighboring channels because of crosstalk 
effects even with optimized pulse parameters. The 
compensation effects of the case with double pulse is shown 
in Figure 10. 
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Figure 10. Maximum crosstalk at the neighboring channels if these 
channels are compensated with the optimized double pulse 

 
 
 
The double compensation pulse prevents the 

neighboring channels from ejecting a droplet. But there is 
still an oscillation of the fluid in the neighboring channel. 
The compensation has also negative effects on the driven 
channel. The droplet velocity decreases to v = 4.7 m/s. 

The effect of compensation is illustrated in Figure 11. 
The velocity of the fluid inside the nozzle of the 
compensated channel that normally causes the unwanted 
jetting is decelerated and thus prevents the nozzle from 
ejecting a droplet.  
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Figure 11. Fluid velocity in the nozzle of the neighboring channel 
in the compensated and uncompensated case 

 
 
 

Conclusion 

A CFD model for the 3D analysis of the fluid flow in a 
given printhead has been combined with a electro-
mechanical lumped parameter model of the piezo bend 
mode actuator to study the crosstalk behavior between 
adjoining channels. A parameter study has been carried out 
to study the different ways of crosstalk compensation.  

The only way to prevent the closest neighbors of a 
driven channel to eject a unwanted droplet is to apply a 
double pulse with optimized parameters at the affected 
channels. 

This way of compensation has two negative effects: 
Applying a compensation pulse not only prevents the 
unwanted jetting but also reduces the velocity of the ejected 
droplet at the driven channel. Another negative 
consequence is that the driving frequency is decreased 
because the channels of the printhead must be fired in three 
groups. 

Moreover the modeling of the given printhead 
described as a coupled system makes it possible to 
understand the underlying mechanisms of the drop 
generation process as well as the crosstalk behavior an thus 
can be used as a tool for a further optimization of the 
printhead. 
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