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Abstract 

Techniques are described for determining optimum halftone 
masks for electrophotographic laser printers. Earlier 
techniques were based primarily on up-shifting the noise 
power of the halftone pattern in order to minimize visual 
granularity.1,2 This strategy worked well with low 
addressable printers up to the mid 1990s. However, current 
addressability of EP printers is so high that too much up-
shifting introduces printer instabilities that can introduce 
different kinds of granularity and/or mottle. Thus, the 
optimum halftone mask for image quality should have noise 
power concentrated within at frequency band between the 
edge of human vision and the edge of printer stability. The 
authors have developed search techniques for examining 
permutations of halftone masks of size HxW. The 
techniques are based on a strategy called a genetic algorithm 
(GA).3  

Introduction 

The search for practical improvements in print image 
quality (IQ) has always been an iterative process involving 
trial and error printing, evaluating, modifying, printing, etc. 
This iterative search is summarized in Fig. 1. A test pattern, 
(A), is selected and printed with the printing device of 
interest. The result is a printed sample (B). Step (II) in the 
process is the evaluation of image quality. Step (III) 
involves making changes to the system. 

Each loop of iteration in the optimization of Fig. 1 can 
take hours or days, depending on the methods used to 
evaluate printed samples and to select system 
improvements. The objective of the current project was to 
shorten the time for each iteration to milliseconds in order 
to increase by several orders of magnitude the number of 
halftone screens one can test. To accomplish this, Steps (I), 
(II), and (III) were carried out as software simulations rather 
than by printing and evaluating real printed samples. Each 
simulation is described below, and the combined loop of 
Steps (I), (II), and (III) was configured as a genetic 
algorithm (GA).3  
 

 

Figure 1. Iterative IQ Search 

Step (I) The Virtual Printer 

We selected a single printer for optimization, a laser EP 
printer (HP-4500 at 600 dpi), and the printer model was 
constructed and calibrated to this printer. Details of the 
model and the calibration procedure have been described 
elsewhere.4 The key requirement for the printer model of 
Step (I) is that the simulated printed image must adequately 
approximate the real print regardless of the halftone screen 
one selects. While many printer models have been described 
in the literature, only those models that describe the 
physical mechanisms involved in the EP process have been 
shown to be capable of meeting this criterion.5 Such a 
mechanistic model is too computationally intensive to meet 
the needs of the current project, so a semi-empirical model 
of printer non-linearity was developed. This virtual printer 
is summarized in Fig. 2. The assumption in the design of the 
virtual printer is that the overall printing process can be 
summarized with four key functions. 
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Figure 2. Step (I), the virtual printer 

 
Process (1) is a mass spread function (PSF) that 

approximates the physical spread of toner in the printing 
process. This is analogous to modeling the physical dot gain 
of a printing process. It is important to keep in mind that the 
PSF of process (1) is not meant to be a description of the 
physical mechanism but a summary of the physical spread 
of toner in the process. The mechanism of toner spreading 
can involve different physical mechanisms at different 
points in the EP process. The overall result is modeled here 
by a single PSF function.  

A test pattern (A) is selected and sent to the printer. 
The test pattern is a matrix of 0s and 1s generated by the 
halftone mask under evaluation. The 0s and 1s represent the 
idealized pattern of toner coverage (0 g/m2 and 100% g/m2) 
one intends to form on the paper. The spread process is 
accomplished by super-sampling the matrix of 0s and 1s in 
order to approximate continuous space, C(x,y). Then a point 
spread function, PSFm(x,y), is applied as shown in equation 
(1) where * is the convolution operator. The result, Cb(x,y), 
may be thought of as a blurred distribution of toner mass. 

 
Cb(x,y) = C(x,y)*PSFm(x,y)    (1) 

 
The spread function used in this project is shown in 

equation (2). It contains two arbitrary parameters, p and s, 
that were determined by a calibration process that will be 
described below. 
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Process (2) in the printer model of Fig. 2 is a simulation 
of printer instability. This is simulated by a random number 
generator that produces normally distributed values for a 
metric we call "printer noise", ∆S, at each location (x,y) in 
the super-sampled image. Values of ∆S are distributed with 
a mean of zero and a standard deviation of σS. The value of 
σS also is determined by a calibration process described 
subsequently. 
 

∆S(x,y) = RANDOM(x,y,σS)     (3) 

 
The noise from equation (3) is added to the blurred 

toner coverage from equation (1) to produce a signal 
voltage as shown in equation (4).  
 

V(x,y) = Cb(x,y) + ∆S(x,y)    (4) 

 
Caution should be exercised in the interpretation of 

equation (4) and of the model in general. This is not a real 
mechanistic model. It is an empirical model that is meant to 
simulate the important non-linear characteristics of the 
printer. Thus, the term V(x,y) is not meant as a model of the 
electrical potential across a photo-conductor. Rather, it is 
the empirical transfer function of process (4), illustrated in 
Fig. 3.  
 

 

Figure 3. The Mass Tone Transfer Function, TTF 

 
Step (3) in the printer model simulates the overall tone 

transfer characteristic of the printing process. A halftone 
imaging process is a bi-level process, and one often forgets 
that an underlying continuum process is involved. For an 
EP printer, this underlying continuum is a tone transfer 
function involving toner coverage, Cd in g/m2, as a function 
of a voltage level, V. In Fig. 3, the bi-level voltages are 
intended to be 0 and 1 for no toner and for a toner halftone 
dot respectively. The function in Fig. 3 was modeled by 
equation (5). The constant, γ, is determined by a calibration 
process. 
 

 ( ) ( )γd yx,Vyx,C =     (5) 
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Step (4) in the printer model describes the optical dot 
gain of the virtual printer. With a map of distributed toner, 
Cd(x,y), and independent measurements of the optical 
properties of the substrate paper, the resulting reflectance 
distribution, R(x,y), may be calculated reliably, as has been 
reported in detail previously.6,7,8,9 

Step (I) Calibration of The Virtual Printer 

The virtual printer described above has four arbitrary 
constants (p, σ, σS, γ). Values for these constants were 
estimated experimentally by calibration with seven test 
patterns. The test patterns were clustered dot halftones of 
nominal dot area fraction F = 0.25, as illustrated in Fig. 4. 
The cluster sizes for intended toner delivery range from 1x1 
to 9x9 in units of printer addressable (1/600 in-1). Each 
pattern was printed with the HP-4500 EP printer using cyan 
toner, and each printed sample was analyzed quantitatively 
for the toner coverage, Cm(x,y), using an analytical 
technique previously reported.4 The same test patterns were 
passed through the virtual printer, and the simulated tone 
coverage, Cd(x,y), was calculated. The values of the model 
constants (p, σ, σS, γ) were adjusted for a minimum error 
between Cm(x,y) and Cd(x,y). 
 

 

 

Figure 4. Example of 1x1 and 2x2 test patterns and the 
photomicrographs of the corresponding printed samples 

 
 

Step (II) IQ Evaluation 
 

Each halftone pattern in this study was evaluated with an 
overall figure of merit calculated from the simulated 
distribution R(x,y) calculated in Step (I). The figure of merit 
chosen for this study involved the RMS granularity of the 
simulated image. This RMS granularity was calculated by 
first calculating the Wiener spectrum W(x,y) as the squared 
modulus of the Fourier transform of R(x,y). Then the visual 
RMS granularity was calculated as shown in equation (6), 
where CSF(x,y) models the contrast transfer function of 
human vision.10 A visual gamma function, dL/dR, was not 

included in the calculation because only relative ordering of 
IQ was needed in this study.  
 

  ( ) ( )∫∫ ⋅=

yx,

dxdyyx,Wyx,CSFvσ    (6) 

 
The visual granularity, σV, is caused by two factors. 

The first is the granularity of the halftone pattern itself. This 
is the granularity one tries to minimize by shifting to higher 
spatial frequencies so it will be filtered out by the visual 
CSF.1 The second cause of σV is the instability of the 
printer, as illustrated in the micrographs of Fig. 4. The 
maximum possible value of σV would occur for a very large 
clustered dot pattern that is not filtered out by the CSF. This 
maximum value of σV is given by equation (7), where F is 
the dot area fraction. Rmax and Rmin are the reflectance 
values of the background paper and of the solid printed 
region.  
 

σmax = F·(1-F)·(Rmax - Rmin)      (7) 
 

The figure of merit, FOM, calculated in each loop of 
the iterative optimization process and passed to Step (III) 
was defined as shown in equation (8). 
 

FOM = (σmax - σv)/ σmax     (8) 

Step (III) Genetic Improvement 

The genetic algorithm simulates evolution by selective 
breeding. The GA works with a population of many HxW 
halftone masks, determines their relative fitness as 
described above, and breeds children from pairs of better fit 
individuals replacing lesser fit individuals. The new 
children are slightly mutated, and the process iterates until a 
stopping criterion is met (such as: a sufficiently high fitness 
mask is discovered, the allocated time budget has elapsed, 
or insufficient further progress is being made).  

The masks all consist of permutations of the integers 
{0,1,2,..., HW-1} (these are scaled appropriately when used 
as arrays of thresholds), and crossover and mutation 
operations follow the patterns described by Goldberg.3 Full 
details of the genetic algorithm parameter choices are 
described elsewhere.11  

We have tried several variations on this theme: 
 1. full permutations 
 2. gear wheels method 
 3. hybrid screens 

 
Methods 1 and 3 involved searches for 64x64 masks; 

method 2 for masks approximately that size. 
The full permutation method involves searching the 

massive (H·W)! space of all permutations. This technique 
works, but it is terribly slow. The other two methods exploit 
some things we already know about halftone screens and 
allow us to search considerably smaller spaces. 
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The gear wheel method refers to a pair of meshed gears 
with H and W teeth, where H and W are relatively prime. 
The teeth on each wheel are permutations (thus there are 
H!W! possible patterns here). If the teeth are clocked 
through time steps 0 to H·W-1, the touching pair of teeth 
(p,q) at time t indicates that the halftone mask matrix 
contains value t at position (p,q).  

For computational convenience (the genetic algorithm 
was implemented in MatLab), we construct a standard mask 
using the trivial permutations (0,1,2,..., H-1) and (0,1,2,..., 
W-1). Then we permute the rows with the H-permutation 
and the columns with the W-permutation.  

The hybrid HxW screens are constructed from two 
smaller screens, U and V, of size AxB and CxD, 
respectively, where H=A·C and W=B·D. The two smaller 
screens are also permutation matrices, so our search space is 
of size (A·B)!(C·D)!.  

The rule for creating the HxW array from U and V is: 
 

M[kA+i][lB+j] = C· D· U[i][j] + V[k][l]    (9) 
 

This rule, similar in pattern to the Kronecker or tensor 
product of matrices, is a standard method for producing 
halftone masks, such as Bayer's dispersed dot mask in the 
case that both U and V are dispersed dot masks. In case U is 
a small single clustered dot and V is a large dispersed dot 
mask, M will be a clustered dot mask with a small cluster 
but a large number of thresholds.12 
 

Results 
 
Figure 5 illustrates typical results for two GA searches.11 
The FOM increases rapidly for the first few iterations and 
then more slowly. As one might expect, the FOM does not 
always increase for consecutive iterations. However, over 
time the overall FOM increases. The upward trend may or 
may not approach FOM=1, and the decision to halt the 
process was made based on the amount of time required to 
conduct the search. The time required for each iteration was 
between 10-1 and 101 seconds, depending on the details of 
the chosen GA. Thus, 14,000 iterations typically required 
many hours to run, so the practical choice was made to halt 
the process after a convenient number of hours.  

Conclusion 

It is certainly true that the printer model described in this 
work is a highly simplified representation of the actual 
processes that govern the spread and delivery of toner in an 
electrophotographic laser printer. It is also true that the IQ 
evaluation and the figure of merit are simplifications, and 
the GA search technique still has much room for 
improvement. However, the work thus far strongly indicates 
the utility of combining the GA technique with a non-linear 
printer model for printer optimization. Further work is 
underway to improve all three steps of Fig. 1. In particular, 
improvements in the virtual printer are underway to account 
for color reproduction as well as noise power, and improved 
GA models are under development. 

  
Figure 5. Figure of merit versus GA iteration number for the 
Hybrid and the Gear Wheel techniques. 

 

 
Figure 6. Gray ramps from Gear Wheel and Hybrid algorithms 
that produced the highest FOM values. 

 
Another observation is that the rate of improvement of 

FOM is often faster for some genetic models, and slower for 
others. It is possible that many different genetic models may 
lead to similar, very high quality masks. However, some 
genetic models may approach an optimum more quickly and 
thus be preferred.  

Figure 6 shows part of the gray ramps for masks with 
the highest observed FOM values from the Gear Wheel and 
Hybrid genetic models.11 The hybrid approach began with a 
built-in clustering property to minimize, a priori, the noise 
characteristics associated with instability characteristics of 
the printer engine. The result was a rapid initial rise in 
FOM. The Gear Wheel simulation was begun with a more 
dispersed arrangement of threshold values, and the FOM 
increased much more slowly that observed for the Hybrid 
simulation.  
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