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Abstract 

We have shown that thin film growth of pi-conjugated 
materials by seeded supersonic molecular beams (SuMBE) 
is an effective approach to control structure and 
morphology. These are key features to improve control on 
energy and charge transport properties and hence for the 
realization of improved devices including optolectronic 
applications. Recent results on phthalocyanines, thiophene 
oligomers and acenes will be discussed showing that control 
on the precursors, in terms of energy and momentum in 
particular, is of paramount importance in controlling the 
final properties of the films including the optical response as 
well as interfaces. Films showing optical properties 
comparable to those of the corresponding single crystals and 
with a controlled morphology have been produced by 
“tuning” the initial parameters in the beam. The initial 
kinetic energy, easily varied in the range from a fraction of 
eV up to tens of eV by changing the seeding of the 
molecules into an inert carrier gas (i.e. He, Ar, etc.), is 
shown to be a key parameter. Even the defect type and 
density as well as the polymorphism can be controlled by 
this method. In a SuMBE co-deposition scheme we have 
developed solar cells based on phtalocyanines and 
fullerenes the performance of which could be optimized by 
controlling the SuMBE deposition parameters. An outlook 
of the possible developments will be discussed in view of a 
new generation of devices. 

Introduction 

Development of novel optoelectronic and electronic devices 
made of organic semiconductors, like organic light emitting 
diodes (OLEDs), organic thin film transistors (OTFTs) 
organic solar cells require high quality film deposition 
methods with improved control on chemical, physical, 
electronic and optical properties. The chemical 
“engineering” at the molecular level promises an 
increasingly wide spectrum of opportunities of material 
functional properties. Often a critical question is to achieve 
an adequate control on structure and morphology at the 
solid state needed to fully exploit the molecular properties 
and to produce “useful” devices. Often a defect free growth 

of (poly-)crystalline materials with well defined molecular 
ordering is desired. A strong improvement on the growth 
from liquid phase has been achieved by vacuum deposition 
methods (PVD) and in particular by organic molecular beam 
deposition (OMBD) or organic molecular beam epitaxy 
(OMBE). For many practical applications OMBD/OMBE 
has proven to be well appropriate. However, it still faces 
severe limitations depending on the type of molecule and 
substrate so that an improved control of the film quality 
remains desirable to give rise to better performing devices. 
Factor ruling a key role are the strong anisotropy of the 
molecular precursors and the often large number of 
polytypes in the solid phase. We have developed a new 
approach 1  to tackle such questions, which we called 
supersonic molecular beam epitaxy (SuMBE). This method 
uses the expansion of a light carrier gas into vacuum, with 
organic molecules evaporated (seeded) into the gas stream2.  

Supersonic Beams of Organic Molecules 

The supersonic expansion of the light inert gas induces a 
series of effects on the heavier molecular seeds. First of all a 
well controllable aerodynamic acceleration is produced by 
the large number of collisions (typically 100-1000) that the 
heavier slow molecules experience during the expansion 
with the much faster, lighter particles, of the carrier gas. As 
a consequence, by simply changing the carrier gas species 
and the percentage of seeding one can continuously change 
the initial kinetic energy of the seeded molecule. Figure 1 
shows this effect for a series of π-conjugated molecules of 
interest in the field (pentacene, oligothiophenes, 
phthalocianines). An interesting point is that one could span 
a regime of kinetic energies from tens of meV up to tens of 
eV. This allows covering the whole range from the typical 
energies of standard OMBD up to the thresholds of 
chemical activated processes including absorption, 
dissociation, surface reactions, etc. (a sort of “hammer 
chemistry”). An example of this extreme is represented by 
some of our experiments on the SiC synthesis by supersonic 
beams of C60

3 . We discuss here an intermediate regime 
where the characteristics of the beam would give improved 
control on the growth of the films on different substrates.  
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Figure 1. Dependence of the kinetic energy of several p-
conjugated molecules seeded in a supersonic beam of a much 
lighter gas (H2, He, Ar) (see text). The abscissa gives the pressure 
of the carrier gas into the source; the temperature of the source is 
kept constant. 

 
 
 
Another important effect, occurring to strongly 

anisotropic molecules when seeded in a supersonic 
expansion, is the alignment of their backbone along the 
beam axis. This effect, observed in oligothiophenes4 and 
benzene,5 is driven by the need to show their least cross 
section to the denser and faster flow of the lighter carrier 
species. Thus “molecular Frisbees” travelling with a 
preferred order in the gas stream are achieved. We than used 
such an energetic controlled beam of ordered organic 
molecules for film deposition onto solid substrates.  

SuMBE Grown Thin Films 

First experiments with SuMBE deposition of organic 
molecules indicated a growth of ordered molecular films. 
These experiments dealt in particular with 
oligothiophenes.6-8 Major relevant properties concern 
morphology, structure and optical properties. In more recent 
experiments we explored the properties of pentacene grown 
on thermally oxided Si (100). Figure 2 shows the different 
morphology achievable by SuMBE using different initial 

conditions of the molecules. Using Kr as a carrier gas we 
could produce a beam of pentacene at kinetic energies 
similar to the ones produced by a Knudsen cell (typically a 
few hundreds of meV. Films grown with such beams show 
the typical morphology shown in Figure 2. The AFM 
micrograph, obtained in tapping mode, shows grains on the 
scale of 100 nm where it is hard to recognize any other 
feature. When higher kinetic energies are used the 
morphology is strongly affected and an increasing degree of 
ordering is obtained.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Example of the different morphologies achievable with 
SuMBE at room temperature. The case of Pentacene on a SiO2/Si 
is shown. When a low kinetic energy of about 0.5 eV is used a 
granular unresolved morphology is observed (bottom micrograph) 
typical of an OMBE growth in similar conditions. Using higher 
kinetic energies (~5 eV) a much more ordered layered structure 
can be produced (top micrograph) 
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The top AFM micrograph of Figure 2 shows the 
morphology of a pentacene film grown by supersonic beam 
with the molecule at a kinetic energy of about 5.5 eV. A 
very regular terraced structure is observed which is regular 
over a µm scale. It should be emphasized that such a result 
could not be achieved in the OMBD configuration unless 
accompanied by thermal annealing procedures confirming 
literature data6 . In collaboration with the group of prof. 
Scoles, we have also shown that the structure could be 
nicely controlled by SuMBE studying the conditions of 
layer by layer growth achievable on a clean Ag(111) and 
studied by atomic diffraction and X-ray reflectivity.7 

We have also addressed the question of the optical 
quality of the samples, several hundreds of nm thick, grown 
by SuMBE in terms of degree of crystallinity and of density 
of defects. We used low temperature photoluminescence a 
sensitive probe of degree of ordering and presence of 
defects. Figure 3 shows an example of such measurements. 
The three spectra refer to films grown in very similar 
conditions (flux, substrate and preparation conditions) but 
for the kinetic energy of the precursors in the beam. At the 
highest kinetic energy used (15 eV) the spectrum appears 
very well resolved and practically all the features observed 
are interpreted as the vibronic structure and its replicas but 
for a very small feature labelled “C”. Such a feature 
becomes increasingly important as the kinetic energy of the 
beam is decreased down to 11 and 8 eV respectively. 
Similarly the 00 peak becomes smaller. We could associate 
such a feature to the presence of defects due to molecules 
slightly bended with respect to the crystalline phase of the 
film. It should be noted that spectra as sharp as the once 
reported in Figure 3 cannot be obtained using any other 
growth method unless one uses ultra-thin films on strongly 
orienting substrates and/or, to a certain extent, temperature 
treatments.  

An interesting class of molecules, widely studied for 
several optoelectronic devices, is represented by 
phthalocyanines. The different symmetry of these molecules 
makes their growth quite different than observed for rigid 
rotor like molecules. In this case we have systematically 
studied the growth under different conditions in particular 
for ZnPc and for TiOPc. A variety of different 
morphologies have been observed varying the beam 
parameter, the substrate and the growth temperature. A 
more detailed discussion will be given in a coming paper,8 
here we would like to emphasize that ingle crystals larger 
than 5 µm X 5 µm several hundreds of nm thick have been 
obtained. Figure 5 shows an AFM image obtained by 
growing TiOPc on mica using a supersonic beam of  17eV 
and a substrate temperature of about 490K.  

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 3. Combining SuMBE with growth at higher temperatures a 
variety of morphologies could be produced up to large single 
crystals. Here it is shown an example of TiOPc on mica. 
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Figure 4. Low temperature (10 K) photo-luminescence from films 
of quaterthiophene grown using different initial kinetic energies as 
reported in the top of the figure.The feature labeled “C” refers to 
defects. The PL data confirm the ability to control features like 
these. 
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Figure 5. Absorbance of SuMBE grown films with or without 
heating at 40°C in air. The distinctive signature of phase II of 
TiOPc is clearly observed for the heat treated sample. 

 
 

We have also produced films in the pure phase I and 
phase II polymorphs by combining the control on the kinetic 
energy of the precursors with different substrate 
temperatures. An interesting effect has been observed for 
films grown at temperatures below room and then subjected 
to a mild temperature treatment (40-50°C in air). Figure 5 
shows the absorbance spectra of one of such samples. The 
spectrum of the film as grown and exposed to ambient air is 
typical of the TiOPc as obtained by any other standard 
deposition at room temperature. After a mild treatment at 
only 40°C, for les than an half hour in ambient air, the 
spectrum changes completely showing the band at about 
830 nm that is a typical signature of the phase II 
polymorph.9 After such a procedure the film formed remain 
very stable in time over a long period. If any further thermal 
treatment is carried out over temperature range up to 200°C 
no further modification of the spectra. We ascribe this effect 
to the formation of nano-micro-precursors induced by the 
SuMBE growth that allow the formation of a metastable 
phase that is responsible of the transition to the phase II 
during the mentioned treatment. This is also indicated by the 
fact that if the sample grown at -100°C is not treated soon 
(in bout one hour) after exposure to ambient air, the 
transformation to phase II is not observable unless very high 
temperatures are used (larger than 200°C). 

Conclusions and Outlook 

We have shown that SuMBE is a very valuable growth 
method that gives rise to umprecedented control on the 
growth of molecular speies of different types from rigid-rod 
like such as acenes and oligothiophenes to more symmetric 
and planar ones such as phthalocianines. 

This highly enhanced control on structure and 
morphology of organic films that is achieved by SuMBE 
opens a new perspective for the development of devices 
where energy and charge motilities are key parameters to 

take care of. We carried out first tests in this direction 
developing simple solar cells where the active layer is 
deposited using SuMBE.  

Similar studies are under way to develop a new 
generation of organic thin films transistors and sensors. 
They could in fact strongly benefit of the enhanced 
mobilities that the control, by SuMBE growth, on structure 
and morphology gives rise to. 
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