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Abstract  

Currently a lot of experienced efforts for inkjet printing 
were paid to promote the print quality with high-density 
nozzles (>/= 600 nozzles per inch, npi) and little droplet 
(<10 picoliter, pL) since the inkjet can approach the 
photographic printing. In addition of promoting resolution, 
an accurate directionality of droplets ejected and flying 
vertically from nozzles is also essential to get a faultless 
print quality. This work at first developed a new method of 
statistically evaluating the droplet deflection by the dot-
images printed on media. Different microflow architectures 
(arches) for thermal-bubble inkjet (TIJ) heads with 
perturbed orifices were designed in order to eject the 
droplets of 5~7 pL with the jetting frequency of 5~19 kHz. 
A variety of drop velocities were individually got by these 
different nozzle geometry to adjust the influence of 
deflection due to the asymmetry and the perturbation of 
orifices. Meanwhile the factors injuring or degrading the 
vertical directionality can be clarified. These evaluations of 
new microflow arches indicate the factors to reduce 
deflection and therefore approach the high-quality printing. 

Introduction 

An ideal print quality for inkjet printing is attributed to the 
accuracy of drop projection. It’s expected that all drops 
should be ejected-out vertically from the nozzles. However, 
many external factors such as perturbation, ink clog, ink 
puddling around the orifices inevitably deflect the drop-
ejected direction. These deflection factors usually result 
from the orifice circularity, easy dry or cloggy ink-property, 
and the correlation property between ink and nozzle surface. 
In addition, a high enough drop-velocity can reduce the 
effect of external deflection factors and serve an important 
role to promote the accuracy of drop-projection. For a TIJ 
head, it’s difficult to change the drop velocity at liberty by 
controlling the energy applied to the actuators.1 The drop 

velocity of a TIJ head is only dominated by internal factors 
such as the microflow architecture,2 the orifice geometry3 
and the ink viscosity. Several contributive conclusions were 
proposed by Chiu et al with simulative calculation, 
including the relationship between the heat flux and bubble 
pressure,4 between drop velocity and drop viscosity,5 and 
the better design of ink-feed-channel.5 A continuous drop-
ejecting and vision system has been already constructed and 
used4,5 for inspecting the inkjet performance at various 
applied energy and frequency. 
 This work is mainly concentrated on the characteristics 
of drop velocity and drop-ejected deflection. We at first 
designed and created a new apparatus to inspect and 
calculate the deflection. By comparing the position of 
nozzles and actual dots, we got the deviation of a group of 
nozzles in a head. Subsequently, we prepare some TIJ 
printheads to generate various drop-velocity and cause 
asymmetry perturbation due to different design of nozzles. 
By these samples, the deflection affected by orifice 
perturbation can be investigated. 

Experimental 

A. Apparatus for Dot-Printed Accuracy Inspection 
 

orifice position
dots printed-on-media

arithmetic axis
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Figure 1. Illustration of deflection arithmetic for drop-ejection 
accuracy. 
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 Figure 1 shows the main concept used for the deflection 
clarification of drop-ejection in this work. A continuous 
drop-ejecting system has been already constructed.4,5 The 
printed media and the printhead are fixed, and only a drop is 
ejected out by each nozzle. An ideal drop-ejection should 
make all dots-printed locate consistently with the 
corresponding nozzles. Substantially, the printed dots are 
inevitably deflected and deviated from the corresponding 
nozzles, as illustrated in Fig. 1. By the sum or average of all 
dots’ deviation, the magnitude of deflection can be 
statistically quantified. To get this deviation, we designed 
and constructed a dot-printed accuracy inspection (DPAI) 
system, shown in Fig. 2 and providing the functions of (1) 
printing single dot for each nozzle, (2) inspecting multiple 
dot-images, and (3) calculating the deviation by the dot 
image. The DPAI system drives a printhead to eject one 
drop per nozzle. Figure 3 shows the dots’ image got by the 
DPAI system driving a 600 dpi printhead. So far, the 
driving firmware isn’t optimized, the dot lost is often 
observed if driving >36 nozzles in one head to eject only a 
drop per nozzle at one time. Therefore the lost dots are 
temporarily unconsidered to the statistical deviation herein. 
 
 

 
Figure 2. Schematic apparatus of dot-printed accuracy inspection 
(DPAI) system (patent pending). 

 

Figure 3. Image comparison of dots printed-out by DPAI system. 

 

Printhead Preparation 
 Several printheads with asymmetry microflow arches 
were prepared for creating various drop velocity and inkjet 
perturbation. The ink-feed channel in microflow arch of TIJ 
head is mainly classified to symmetry or asymmetry 
category dependent of the inlet of heater. The single inlet is 
symmetry ink-feed, as shown in Fig. 4(a); on the other hand, 
the firing chamber with double inlets is probably symmetry 
if the design can make ink enter the firing chamber 
symmetrically, as similar to Fig. 4(b). Due to the incomplete 
experiments, we are not sure the ink-feed channels shown in 
Fig. 4(b) can provide ink flow symmetrically. Only 
asymmetry ink-feed channel was used for this study. 

heater

ink-feed
channel

firing chamber
(a) (b)

 
Figure 4. (a) asymmetry, (b) symmetry ink-feed architectures of 
printheads designed for inkjet of 5~7 pL and 15~19 kHz. 
 
 After heater and ink-feed channel fabrication, a variety 
of nozzle plates with different orifice diameter and 
thickness were fabricated by nickel electroforming and gold 
surface-coating. On purpose of 5~7 pL drops, the heater 
size is 23x23 um2 and the diameter of orifices (Dorf) is 
13~14 um. Different thicknesses of nozzle plates (TKNZ) are 
fabricated with 21, 26 and 31 um in order to define different 
drop-velocity, as list in table 1. In addition, as shown in Fig. 
5, the perturbation is generated by asymmetry orifices with 
the protruding (B2) or recess (B4). The ink used herein is 
with the 1.6 cps viscosity and the about 32 dyne/cm surface 
tension. Employing these 5 nozzle-geometry, the 
characteristics of deflection affected by drop velocity and 
perturbation can be investigated. 
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Figure 5. Photographic surface-view of different NZ-geometry  
types (list in Table 1) 
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Table 1. Key parameters of different nozzle (NZ) 
geometries.  

NZ Diameter Thickness of NZ-Plate Perturb 
A 14.3 (um) 21 (um) 0 
B 14.2 26 0 

B2 14.2 26 ~ -2um 
B4 14.2 26 ~ +3um 
C 13.2 31.5 0 

 

Results and Discussion 

Dot Accuracy Affected by Drop-Velocity  
As above description, it’s likely the simplest method to 

change drop velocity by modifying the orifice-plate 
thickness. By the continuous drop-eject and vision system, 
we got experimentally 3 different drop-velocity (Vdrop) in 
NZ geometry A, B and C. As shown in Fig.6, the NZ-A 
with lowest Dorf/TKNZ ratio contributes to the highest 
Vdrop at all delay time. and the NZ-C with the thickest 
nozzle-plate causes the lowest Vdrop. The Vdrop of 5 NZ-
geometry are calculated in detail and list in table 2. This 
trend is consistent with the proposed results.3 The Vdrop of 
B4 is higher than that of B2 should be due to the positive 
perturb enlarges the orifice area at the same NZ-plate 
thickness. 

Figure 7 shows the drops jetted at 15 and 19 kHz in 
NZ-A and NZ-C. Compared to Fig.6, there is no significant 
difference of droplet between 5 kHz and 15 & 19 kHz in 
NZ-A and NZ-C. Except for the perturbed NZ, all NZ-
geometry prepared for 5~7 pL have the ability of jetting 
with high frequency.  
 To inspect and evaluate the deflection of dots printed-
out, a photography image of single-dot per nozzle was first 
printed by DPAI, as shown in Fig.8 on the last page of this 
paper. Sequential 36 nozzles were used for DPAI analysis at 
one time. The inspection method of evaluating more nozzles 
(>36) is still developed and established. An average 
deviation (DVave) is defined as following: 
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where (Xi,dot-Xi,NZ) is the distance between actual dot and 
the corresponding nozzle, N is the number of dots actually 
printed-out (N < 36). The lost dots were ignored. The DVave 
indicates the average dot-deviated distance per nozzle. If 
DVave approaches to be 0, it is an ideal directionality 
accuracy. NZ-A shows a lowest DVave. A significant trend 
is that the higher Vdrop, the lower DVave is. This result 
reveals an important factor that a high drop-velocity can be 
contributed to an accurate drop-ejected directionality. 
 

 

Figure 6. The drop-ejected vision of various orifice types jetted by 
12V, pulse witdh 1.6 us (~1.6µ-joule/per drop), 5 kHz and delay 
10~35us. 

 

 

Figure 7. The droplet vision of type A and C jetted by 15 kHz and 
19 kHz (delay 30 us), respectively. 

 
  

Table 2. The drop velocity and the average deviation of 
dots printed-out and inspected with DPAI system. 

NZ Dorf/TKNZ (um) Vdrop (M/s) DVave (um) 
A 14.3/21 20.6 11.97 
B 15.6 24.01 

B2 14.1 103.67 
B4 

 
14.2/26 

17.1 N.A. 
C 13.2/31.5 12~14 (unstable) 86.89 
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Dot Accuracy Affected by Nozzle Perturbation 
 Figure 9 shows the dots distribution of perturbed NZ-
B2 with 36 sequential nozzles drived by DPAI system. An 
scattering and deviation from each nozzle position is more 
obvious. The DVave of NZ-B2 is further higher than that of 
NZ-C and much worse than the NZ-B with identical Dorf 
and TKNZ but asymmetry orifices. In spite of the same 
perturbation used for all nozzles in NZ-B2, the protruding 
perturb of orifices frustrates the drop-ejection and make 
more deviation. So, the orifice perturb is the other important 
factor to injure the inkjet accuracy. 

The NZ-B4 cannot be successfully printed-out and 
evaluated for DVave by DPAI system due to too many dots-
lost. 

Conclusion 

The drop velocity and the orifice integrity play an important 
role of affecting dot-ejected accuracy. In this work, we 
established a dot-printed accuracy inspection system to 
statistically evaluate the deviation of 36 sequent nozzles. An 
index DVave indicating the magnitude of dot-deviation can 
show and quantify the deflection of a plarity of nozzles. The 
ratio of orifice diameter to thickness determines the drop 
velocity Vdrop, and a high enough Vdrop provides a low 
deflection inkjet. The asymmetry perturb around the orifice 
seriously degrades drop-ejected accuracy. Therefore, any 
factor resulting in defect or perturb around an orifice, such 
as cloggy ink, uncircular orifice must be eliminated. An 
accurate and high-quality printing should be approached. 
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Figure 8. The photographical image of dots printed-out actually by type NZ-A with 36 nozzles (2 dots lost). 

 

Figure 9. The photographical image of  dots printed-out actually by type NZ-B2 with 36 nozzles (3 dots lost). 
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