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Abstract 

UV-curable inkjet printing is a new technology that is 
expected to grow significantly in the next few years. The 
extremely low ink viscosities required for this application 
entail extensive modification of the conventional 
formulation equilibrium between oligomers, monomers, and 
photoinitiators. The impact in terms of curing efficiency 
then has to be balanced by modifying combinations of 
photoinitiators in this new binder environment. Pigment 
selection will be driven by more demanding requirements in 
terms of resistance to flocculation and gelling. This paper 
describes the influence of optimized additive and pigment 
selection on UV inkjet inks. 

Introduction 

UV-curable inkjet technology has developed very 
dynamically during recent years.1,2 Benefits such as instant 
drying on UV exposure, zero VOC emission, printing on 
non-absorbing substrates, and high resistance of the prints 
to weathering and abrasion are the major driving forces for 
the growing acceptance of this new technology. 

However, the very low ink viscosity that is required to 
achieve good jettability on the printer raises some technical 
challenges. First of all, it limits the number of raw materials 
that can be used for the formulation of UV-curable inkjet 
inks, since the viscosity of acrylate monomers and 
oligomers used in other radical-type UV-inks, e.g. offset or 
screen inks, tends to be relatively high. To avoid 
flocculation and sedimentation, which could lead to nozzle 
clogging, pigments must be carefully selected. The curing 
performance of UV inkjet inks is also severely impacted by 
oxygen inhibition; atmospheric oxygen diffuses more easily 
into these very low-viscosity inks, strongly inhibiting 
radical polymerization, especially during its initial phase3,4. 
Suitable pigments and photoinitiators are essential for the 
formulation of efficient UV inkjet inks.  

Experimental 

UV Inkjet Formulations 
The UV inkjet formulations used are based on a 

commercially available letdown vehicle (Table 1). First, a 
pigment concentrate was prepared by dispersing the 
pigment preparation for 15 min with a dispermat at 15 m/s 
in the letdown vehicle. The concentrate was then mixed 

with the reactive diluent at a ratio of 25:75 with a magnetic 
stirrer to give the final ink containing 2.0-2.5% pigment and 
6 or 8% photoinitiator.  

 
Table 1. Composition of the pigment concentrate and 
the letdown vehicle. 

Raw material Parts 
Pigment concentrate 

Letdown vehicle 65.0 
N-vinylpyrrolidone 15.0 
Pigment preparation 20.0 

Reactive diluent 
Letdown vehicle 99.5 - x 
Photoinitiator x* 
Leveling agent 0.5 

*) x = 8.0 parts for 6% photoinitiator in the final ink 
 x = 10.7 parts for 8% photoinitiator in the final ink 
 

Ink Viscosity 
The viscosities of the final inks were measured at 

various shear stress levels (10-1000 s-1) with a Physica US 
200 rheometer (Paar Physica). 

Dispersion Stability 
The final inks were transferred to GC vials (2.5 ml 

volume) and sedimentation of the pigments was assessed 
visually. 

Cure Speed 
The inks were applied with a Citenco K Kontrol Coater 

to primered aluminum foil, at a layer thickness of 12 µm. 
They were cured to the tack-free state (dry rub test) on an 
IST UV lab curing unit equipped with two medium-pressure 
mercury lamps (120 W/cm each) and optionally, a nitrogen 
purge.  

For all experiments performed under oxygen-reduced 
conditions a Metrotec oxygen-measuring device was used to 
determine the oxygen concentration of the atmosphere 
beneath the UV lamp. 

Photoinitiators 
Usually, initiators with an absorption in the UVA (315-

380 nm) up to the visible range (>400 nm) are required for 
efficient through curing of pigmented systems. Two 
commercial α-aminoketones, one of them in combination 
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with a sensitizer, and an experimental α-hydroxyketone 
were selected for the present assessment (Table 2). 

All three initiators undergo NORRISH type I  
(α-cleavage)5 photocleavage. ITX is a sensitizer that 
occupies  an electronically excited state on UV exposure 
and transfers its energy to a type I photoinitiator, e.g. 
MMMP, provided the energy levels of the photoinitiator 
match the energy levels of the sensitizer.6,7 

 

Table 2. Photoinitiators. 

BDMB 2-benzyl-2-(dimethylamino)-1-[4-(4-
morpholinyl)phenyl]-1-butanone 

MMMP 2-methyl-1-[4-(methylthio)phenyl]-2-
(4-morpholinyl)-1-propanone 

ITX 2-isopropylthioxanthone 

DF-HK Experimental difunctional α-
hydroxyketone 

Pigments 
A yellow, magenta, cyan and black pigment preparation 

(four-color set) was selected for assessment in inkjet inks 
(Table 3). The preparations contain approx. 50% vinyl 
chloride co-polymer to ensure good dispersibility and 
dispersion stability, and have a small particle size with a 
narrow particle size distribution.  

Table 3. Pigments. 
Yellow pigment 
preparation PY 151 / PY 110 

Magenta pigment 
preparation PR 202 / PR 254 

Blue pigment preparation PB 15:3 
Black pigment 
preparation PB 7 

 

Results and Discussion 

Ink Viscosity 
The viscosity of UV inkjet inks, which ranges from 10 

to 50 mPas at ambient temperature, is much lower than that 
other printing inks (e.g. 500-1500 mPas for UV flexo inks). 
Ideal inks have Newtonian rheology, i.e. their viscosity 
remains constant at varying shear stress. 

Figure 1 shows that the determined viscosities of the 
four-color set range from 20 to 33 mPas (T = 23°C), with an  
Newtonian rheology of the inks. The presence of 
photoinitiators – 8% BDMB and 8% MMMP/ITX (4:1) – 
can influence ink rheology, e.g. black ink: 28 mPas for 
BDMB (1) vs. 20 mPas for initiator combination (2). The 
viscosities of the cyan and yellow inks, however, are 
comparable for both initiators. This leads to the conclusion 
that no major influence on ink rheology is to be expected 
from the photoinitiator system. 
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Figure 1. Rheology of yellow, magenta, cyan and black inks 
containing 8% BDMB (1:  solid lines) and 8% MMMP / ITX (2:  
dashed lines) at 23°C. 

 

Dispersion Stability 
The stability of the pigment dispersion is important for 

storage of very low-viscosity systems such as UV inkjet 
inks. In the visual assessment of pigment sedimentation, the 
dispersions have proven to be stable over a period of 21 
days (Table 4). After 27 days, the yellow inks especially 
showed some sedimentation: the ink containing 
MMMP/ITX photoinitiator was subject to the strongest 
sedimentation and flocculation; BDMB and DF-HK were 
subject to less sedimentation and no flocculation. 

 

Table 4. Sedimentation and flocculation. The figures 
behind each color represent the height of the 
transparent ink (in mm) in the vial over the dropped 
pigment.  

 BDMB MMMP/ITX DF-HK 
Sedimentation 

[mm] 
Y 2; M 1 
C 0; B 0 

Y 10; M 1 
C 0; B 0 

Y 2; M 1 
C 0; B 0 

Flocculation Y -; M - 
C -; B - 

Y +; M - 
C -; B - 

Y -; M - 
C -; B - 

Y = yellow, M = magenta, C = cyan, B = black. 
 
 

UV Absorption of Photoinitiators 
Figure 2 shows the UV absorption spectra of the 

compounds used. DF-HK absorbs in the UVC and UVB 
range, whereas MMMP and BDMB show a typical red-
shifted absorption in the UVB and UVA range. The 
sensitizer ITX absorbs up to the visible range. 
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Figure 2. UV absorption spectra of photoinitiators. 

Cure Speed 
Figures 3 and 4 show the cure speed of the UV inkjet 

inks under atmospheric conditions (ca. 21% oxygen). With 
8% photoinitiator, all inks cure between 2 and 3 times faster 
than with 6% initiator. As usual, the black ink shows the 
lowest cure speed within the four-color set. At a 
concentration of 6%, only minor differences between the 
selected initiators were observed. At 8%, however, DF-HK 
showed the best curing performance in all four colors, with 
surprisingly high efficiency in the black ink: 80 m/min were 
achieved with DF-HK, compared to 50 m/min with BDMB 
and the MMMP/ITX combination. These results indicate 
that DF-HK is the most reactive initiator under atmospheric 
conditions, since it allows oxygen inhibition to be overcome 
very efficiently. 

To gain more insight into the influence of oxygen on 
the inhibition of the radical polymerization, the curing 
performance of the inks was evaluated under oxygen-
reduced conditions. Figure 5 shows the cure speed of the 
black ink with 6% initiator at three different oxygen 
concentrations. At 15% residual oxygen concentration, the 
cure speed of the black ink was double that at normal 
atmospheric conditions (21% oxygen) for all initiators. At 
9% residual oxygen cure speed increased dramatically, i.e. 
by 80-100 m/min. This reflects the strong influence of 
oxygen inhibition on the curing properties of low-viscosity 
systems. Under oxygen-reduced conditions the α-
aminoketones show the same (MMMP/ITX) or even higher 
efficiency (BDMB) than DF-HK. 

Conclusion 

Three photoinitiators and four pigment preparations were 
assessed in UV inkjet applications. Low-viscosity inks, with 
viscosities in the range from 20 to 33 mPas and Newtonian 
rheology, were prepared by mixing with the raw materials. 
The selected pigment preparations have two benefits: they 
show little tendency to flocculation and they give a stable 
dispersion over a period of 21 days. 
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Figure 3. Cure speed of UV inkjet inks containing 6% 
photoinitiator, under atmospheric conditions. 
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Figure 4. Cure speed of UV inkjet sinks containing 8% 
photoinitiator, under atmospheric conditions. 
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Figure 5. Cure speed of UV inkjet inks under oxygen-reduced 
conditions (6% initiator). 
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Highly efficient photoinitiators, such as the  
α-aminoketones BDMB or the MMMP/ITX combination, 
can be recommended for UV inkjet curing. The new, 
experimental difunctional α-hydroxyketone showed the 
highest curing efficiency of all tested initiators, since it 
overcomes the marked oxygen inhibition of the low-
viscosity inks most efficiently. 
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