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Abstract 

Dimeric electron transport materials having the following 
general structure were developed. 
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General Structure 
 
All these derivatives were made in a three step reaction. 

First, 9-fluorenone-4-carboxylic acid was chlorinated with 
thionyl chloride to form 9-fluorenone-4-carbonyl chloride. 
Second, 9-fluorenone-4-carbonyl chloride was reacted with 
a diol or dithiol compounds to form a dimeric fluorenone 
intermediate. Finally, the intermediate was reacted with 
malononitrile to form the electron transport product. 
Fourteen new derivatives were made with different linkage 
groups, X. The final products were purified and their 
structures confirmed by proton NMR. The glass transition 
temperature (Tg) and electron mobility (µ) was measured for 
all viable derivatives. Single layer organic photoconductor 
constructions demonstrated the potential of these electron 
transport materials for electrophotography. 

Introduction 

The electrophotographic printer/copier market has an 
abundance of negatively charging, dual layer organic 
photoconductors (OPC) used to form latent images for 
negatively charged dry toner applications. Positively 
charging OPCs, on the other hand, are far less prevalent due 
to either the propensity of dry toners to be negatively 
charged, the difficulty in dip coating inverted dual layer 
OPCs, or the dearth of suitable electron transporting 
materials for single layer OPCs. These single layer organic 
photoconductors (OPC) utilize all of the components found 

in dual layer OPCs plus an extra material that facilitates the 
transport of electrons from the bulk to the positively 
charged OPC surface. These electroactive components 
function to generate electron-hole (e/h) charge pairs and 
facilitate transport of these charges to their perspective 
ground planes. A polymeric binder is required for 
mechanical durability and chemical phase compatibility. 
Electron mobility in single layer OPCs is 1-3 orders of 
magnitude slower than hole mobility and the possibility 
exists that both e/h mobility would diminish if the electron 
and hole transporting materials formed strong charge 
transfer complexes1. This paper presents the results of one 
attempt to develop electron transporting materials that have 
suitable mobilities and form weak charge transfer 
complexes.  

There are serious problems encountered in preparation 
of single layer OPC caused by the crystallization of 
transporting materials and their solubility in liquid toners. 
The results of this paper present solutions to these problems. 

Experimental 

ETM Syntheses 
The synthesis of these dimeric electron transport 

materials was done in three steps. First, 9-fluorenone-4-
carboxylic acid is chlorinated with thionyl chloride to form 
9-fluorenone-4-carbonyl chloride which is isolated and 
characterized. In the second step, 9-fluorenone-4-carbonyl 
chloride is reacted with diol or dithiol compounds at mole 
ratio 2:1 (fluorenone : diol) and the product is isolated and 
characterized. Finally, this intermediate is reacted with 
malononitrile to form the final product which was purified 
by recrystallizing several times.  

The following fourteen compounds were prepared: 
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where X equals the following bridging groups joining the 
electron active chromophore ends. 
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Electron Mobility Measurements 
Charge carrier mobility measurements were performed 

on 5-10 µm thin films coated on an aluminized polyester 
substrate. The ETM to polycarbonate Z-type binder 
composition ratio was 1:1 (w/w).  

The electron drift mobility was measured, by a 
xerographic time of flight technique (XTOF)2, for only 
compounds 1 and 14 because the limited solubility of the 
other compounds prevented the measurement of their 
mobilities. Negative corona charging creates an electric 
field inside the ETM layer and charge carriers were 
generated at the layer surface by illuminating the sample 
with pulses from a nitrogen laser (pulse duration was 2 ns, 
wavelength 337 nm). The layer surface potential decreased 
1-5 % of initial potential as a result of the pulse 
illumination. A capacitance probe, connected to the wide 
frequency band electrometer, measured the surface 
potential reduction rate, dU/dt. The transit time tt was 
determined by the kink in the curve of the dU/dt transient 
in linear or double logarithmic scale. The drift mobility 
was calculated by the formula µ=d2/U0⋅tt, where d is the 
layer thickness and U0 is the surface potential at the 
moment of illumination. 

Electrostatic Cycling Measurements 
Extended electrostatic cycling was performed on a test 

bed that is capable of evaluating 30 mm diameter, ring 
coated drums. This evaluation simulates accelerated 
electrostatic fatigue during extended printing by increasing 
the charge-discharge cycling frequency and decreasing the 

recovery time as compared to larger diameter drum 
formats. The drum rotates at a rate of 12.7 cm / sec (5 ips) 
and the location of each station in the tester is given in 
Table 1: 

Table 1. Electrostatic Test Station Locations 

Station Degrees 
Total 

Distance, cm 
Total 

Time, sec 
Erase Bar Center 0º Initial, 0 cm Initial, 0 s 

Scorotron Charger 87.3º 2.28  0.18 

Laser Strike 147.7º 3.86  0.304  

Probe #1 173.2º 4.53 0.357 

Probe #2 245.9º 6.43 0.506  

Erase Bar Center 360º 9.42  0.742 

 
 
All measurements were performed at ambient 

temperature and relative humidity. Electrostatic measure-
ments were obtained as a compilation of diagnostic and 
long cycling tests.  
1. Diagnostic Test: A charge acceptance, Vacc, and 

discharge voltage, Vdis, baseline was established by 
subjecting the samples to corona charging for three 
complete drum revolutions (laser off); discharging with 
the laser (780nm, 600dpi, 100% duty cycle) on the forth 
cycle; completely charged for the next three cycles; 
discharged with only the erase lamp @ 720nm on the 
eighth cycle to obtain the residual voltage, Vres; and, 
finally, completely charged for the last three cycles. The 
difference between the Vacc and Vdis on the third cycle 
is reported as the functional dark decay voltage, Vdd.  

2. EXTENDED CYCLING: The drum was electrostatically 
cycled for 500 drum revolutions according to the 
following sequence per drum revolution. The drum was 
charged by the corona, the laser was cycled on and off 
(80-100º sections) to discharge a portion of the drum 
and, finally, the erase lamp discharged the whole drum 
in preparation for the next cycle. The first and third 
sections of the drum were never exposed to the laser 
while the second and fourth sections were always 
exposed. This pattern was repeated for a total of 500 
drum revolutions and the data recorded for every 25th 
cycle.  

3. The diagnostic test is re-run after the long cycling test. 

Results and Discussion 

Similar single-unit electron transport materials are 
described in the literature,3 e.g., Xerox developed and 
investigated (4-n-butoxycarbony-9-fluorenylidene) malo-
nonitrile4 as an electron transport material (structure below)  

We report the basic physical properties of all these 
materials, the electron mobilities, and their usage as 
effective electron transport materials for electro-
photography.  

IS&T's NIP19: 2003 International Conference on Digital Printing Technologies

709



 

 

CNNC

O O

 

(4-n-butoxycarbonyl-9-fluorenylidene) malononitrile 

Table 2. ETM melting point and Tg 
Compound m.p., oC Tg, oC 

1 133 38.0 
2 163 70.8 
3 155 58.0 
4 157 55.0 

5* 88 101.0 
6** 90-200 62.0 

7 110 87.0 
8 166 53.0 
9 114 90.0 

* Overlapping Tm and Tg temperatures  
** Polycrystalline 

 
Table 2 lists the onset melting temperature and the 

glass transition temperature after solidification from the 
molten state. 

Figure 1 contrasts the electron mobile nature of 
compound 14 in PCZ (1:1 w/w) to that of hole mobility in 
the same thin film. The drift in the charge acceptance 
voltage is observed in the time interval prior to 0 sec. A 
negatively charged film (lower curve) quickly decreased in 
surface potential after a short flash of UV light at time 0 sec 
whereas the potential of the positively charge film slowly 
decreased linearly with time. This demonstrates that 
electrons are mobile and holes are not mobile in this film. 
Electron movement from the thin generation region to the 
layer surface may cause the small potential jump at the 
illumination moment of the positively charged layer.  

Figures 2 and 3 illustrate examples of the discharge 
transients as a function of initial applied voltage and the 
corresponding transit time derived, mobility field 
dependencies, respectively. The electron transport for 
compound 14 in PCZ, as seen in the figure, is dispersive in 
nature. In all the cases investigated, the mobility µ is 
approximated by the formula 

 
Eeαµµ 0=

.     (1) 

Here µ0 is the extrapolated value for the zero field mobility 
α is Pool-Frenkel parameter and E is electric field strength. 
Table 3 lists the mobility defining parameters µ0 and α 
values as well as the mobility values at the 6.4⋅105 V/cm 
field strength for ETM: PCZ (1:1 mass ratio) thin film 
constructions. 
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Figure 1. XTOF transient in integral mode for Cpd(14): PCZ (1:1) 
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Figure 2. XTOF transient for compound (14): PCZ (1:1) 
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Figure 3. Electron mobility of compound (14) vs. field strength 

Table 3. Electron Mobility via XTOF technique 
Cpd µ0 (cm2/V.s) µ (cm2/V.s) at 

6.4x105V/cm 
a 

(cm/V)0.5 

1 1.0 x 10-8 1.4 x 10-7 0.0047 
14 0.38 x 10-8 3.8 x 10-7 0.0058 
A 1.7 x 10-8 20 x 10-7 0.0062 

A = (4-n-butoxycarbonyl-9-fluorenylidene) malononitrile 
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It is clear from the results in Table 3, that the mobility 
of the single-unit type of electron transporting material is 
ca. one order of magnitude higher than the dimeric-unit 
ETMs at an electrical field of 6.4 x 10-5 V/cm. One 
explanation for the lower mobilites is that the mass of the X 
bridging groups dilutes the amount of electron active 
chromophore added to the PCZ. However, the mass 
difference between the ETMs is too small to account for the 
entire difference in mobilities. Another explanation is that 
the molecular distribution of the active chromophores in the 
layer composition is not as favorable for electron transport 
as in the less sterically hindered, single-unit (4-n-
butoxycarbonyl-9-fluorenylidene) malononitrile ETM.  

Positive charging, single layer photoconductor 
constructions were ring coated onto 30 mm diameter 
anodized aluminum drum cores. The coating solution 
composition consisted of CGM : HTM : ETM : 
polyvinylbutyral binder at a ratio equal to 4.3 : 52.0 : 15.0 : 
28.7 in chlorinated solvent. The electroactive components 
included oxytitanyl phthalocyanine CGM, MPCT-10 hole 
transport material from Mitsubishi Paper Mills, and ETM 
compounds 1, 4, 5, or 7. The dry OPC thickness was 10 µm. 

Figures 4 and 5 illustrate the data output from the 
extended cycling (500 cycles) and diagnostic portions of the 
electrostatic cycling measurement, respectively. In Figure 5, 
the diagnostic test shows the results after electrostatically 
exercising the sample for 500 cycles. 

Table 4 presents the electrostatic diagnostic test results 
for fresh drums and drums after 500 cycles. The values for 
the charge acceptance voltage (Vacc, probe #2 average 
voltage obtained from the third cycle), discharge voltage 
(Vdis, probe #2 average voltage obtained from the fourth 
cycle), functional dark decay voltage (Vdd, average voltage 
difference between probes 1 & 2 obtained from the third 
cycle), and the residual voltage (Vres, probe 2, average 
voltage obtained from the eighth cycle) are reported for 
fresh and electrostatically exercised samples.  
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Figure 4. Extended cycling chart for single layer OPC using 
compound (1) as ETM  
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Figure 5. Cyclic chart at 500 cycles for single layer OPC using 
compound (1) as ETM  

Table 4. Electrostatic cycling of single layer OPC 
Initial After 500 cycles 

Cpd Vacc Vdd Vdis Vres Vacc Vdd Vdis Vres 
1 999 22 91 27 799 26 90 33 

4 518 57 28 19 446 62 32 12 

5 932 20 95 42 780 11 99 44 

7 1035 45 91 36 784 57 85 40 

A* 905 29 61 21 618 60 58 22 

 
 
The comparison compound, A*, in the previous table 

was (4-n-butoxycarbonyl-9-fluorenylidene) malononitrile. 
All of the new ETM samples showed a good initial charge 
acceptance voltage that changed by only 10-20% of the 
initial value after extended cycling. The discharge and 
residual voltages remained low and did not change with 
cycling. Electron trapping may cause a small decrease in the 
charge acceptance voltage at the beginning of cycling. This 
again may be the result of an unfavorable molecular 
distribution in the layer composition. Despite this 
shortcoming these materials are better suited for single layer 
OPC preparation as compared to the single-unit analogs 
because of stability to crystallization and the effects of 
liquid developer.  

Conclusion 

A series of dimeric electron transport compounds have been 
prepared in a 3 step reaction. First 9-fluorenone-4-
carboxylic acid was chlorinated with thionyl chloride to 
form 9-fluorenone-4-carbonyl chloride which was reacted 
with linkage groups to form dimeric intermediate. This 
intermediate was then reacted with malononitrile to form 
the final product which was recrystallized and its structure 
was confirmed by proton NMR. The xerographic time of 
flight measurements of these ETMs showed electron 
mobilities of ca. 10-7 cm2/Vs, only a 10 fold lower mobility 
than the extractable single-unit ETM material. A single 
layer OPC drum using these electron transport materials 
showed good electrostatic performance (high charge 
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acceptance, low discharge and low dark decay) which 
indicates the usefulness of these dimeric ETMs in liquid 
electrophotography.  
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