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Abstract 

Quinacridones are industrially important hydrogen-bonded 
pigments. The shade in the solid state is vivid red while pale 
yellow in solution, indicating the involvement of 
intermolecular interactions in the color generation. The 
electronic structure has therefore been investigated based on 
the crystal structure with special attention to the 
intermolecular N–H·· ·O hydrogen bond using four kinds of 
quinacridone compounds with different H-bond forming 
characteristics: unsubstituted quinacridone (γ-QA), mono-
N-methylquinacridone (MMQA), N,N’-dimethyl-
quinacridone (DMQA) and 2,9-dimethylquinacridone (2,9-
DMQA). γ-QA, 2,9-DMQA and MMQA are found to form 
three-dimensional (“hunter’s fence”), two-dimensional 
(sheet-like) and one-dimensional (chain-like) hydrogen 
bond networks, respectively. The present H-bond aligns the 
transition dipole in a way “head-to-tail”. The bathochromic 
shift upon crystallization (pale yellow to vivid red) is 
mostly attributed to resonance interactions between 
transition dipoles. 

Introduction 

Quinacridones are industrially important hydrogen-bonded 
pigments of red color.1 Among several commercially used 
derivatives of quinacridones, unsubstituted quinacridone 
(QA) and 2,9-dimethylquinacridone (2,9-DMQA) enjoy 
widespread use in the imaging area due to their high 
tinctorial strength and outstanding light and heat fastness. In 
these pigments, the shade in the solid state is vivid red while 
only pale yellow in solution. This clearly indicates that 
intermolecular interactions are involved in the color 
generation. The structural and electronic properties have 
therefore been investigated in the present investigation with 
major focus on the effect of intermolecular hydrogen bonds 
on the color generation mechanism. For this purpose, we 
used the following four quinacridone compounds with 
different H-bond forming characteristics: unsubstituted 
quinacridone with two NH groups, mono-N-
methylquinacridone with one NH group (MMQA), N,N’-
dimethylquinacridone with no NH group (DMQA) and 2,9-

dimethylquinacridone with two NH and methyl groups. The 
molecular structure of these compounds is shown in Fig. 1.  

The crystal structure of the γ phase of QA were 
determined by Potts et al. using synchrotron radiation (R1 = 
0.1214).2 We have recently reinvestigated the structure by 
X-rays at 223 K (R1 = 0.073).3 Both results are basically in 
good agreement. We have also determined the structure of 
2,9-DMQA at 123 K,4 although Lincke et al. reported the 
simulated structure based on the powder X-ray diffraction 
data.5 The structure of MMQA has newly been determined 
in the present investigation.6 On the other hand, the crystal 
structure of DMQA has variously been reported by Ohmasa 
et al. (R1 = 0.15 for 726 non-zero reflections),7 Zavodnik et 
al. (R1 = 0.047 for 532 reflections with I > 3σ)8 and also by 
us (R1 = 0.044 for 1349 reflections with I > 2σ).9 

 

 

Figure 1. Molecular structure of quinacridone derivatives. 

Experimental 

QA and 2,9-DMQA were obtained from Ciba Specialty 
Chemicals. MMQA and DMQA were synthesized 
according to the method described in the literature.10 The 
samples were purified by sublimation, using a two-zone 
furnace.11 The single crystals of QA and DMQA were 
grown from solution in dimethylformamide using an 
autoclave; whereas the single crystals of MMQA and 2,9-
DMQA were grown from the vapor phase at about 583 and 
703 K, respectively. 
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X-ray diffraction data on single crystals were collected 
on a Rigaku R-AXIS RAPID-F diffractometer with CuKα 
radiation (λ = 1.5419 Å). The structures were solved by 
direct methods and refined by full-matrix least squares on 
F2. UV–vis spectra were recorded on a Shimadzu UV-
2400PC spectrophotometer. Polarized reflection spectra 
were measured on single crystals by means of a 
microscope–spectrophotometer (UMSP 80 from Carl 
Zeiss).  

The absorption bands were calculated for QA, MMQA, 
DMQA and 2,9-DMQA on the basis of the INDO/S 
Hamiltonian using Quantum CAChe Ver.3.2 on a PC 
workstation.12 

Results 

Crystal Structure of Quinacridone Derivatives 
Table 1 details the crystallographic parameters for QA, 

MMQA, DMQA and 2,9-DMQA. The molecular 
arrangement is also shown in Fig. 2 for these derivatives. 

 
i) γ-QA.3 The molecule is entirely planar and belongs to 

the point group of Ci. As shown in Fig. 2(a), there are 
chains of intermolecular hydrogen bonds along the c-
axis between the NH group of one molecule and the O 
atom of the neighboring one. One molecule is 
hydrogen-bonded to four different molecules in a 
fashion “hunter’s fence”, leading to the formation of a 
three-dimensional H-bond network. This kind of 
molecular arrangement is typical of indigo13 and 
dithioketoquinacridone pigments.14 The N/O distance 
and the NH/O angle are 2.756 Å and 163°, respectively. 
 

ii) MMQA.6 The molecule is again entirely planar. A 
small dipole moment of about 0.44 D appears as a 
result of C1 symmetry. Figs. 2(b) and 2(c) show the 
projection of the crystal structure onto the (a,c) and 
(b,c) planes, respectively. There are two kinds of 
stacking columns along the b-axis. The molecules in 
one column are inclined at about 45° with respect to the 
molecules in the neighboring column. In each column, 
the MMQA molecule and its inverted one are stacked 
pairwise alternately along the b-axis. There is one-
dimensional (chain like) intermolecular N–H·· ·O 
hydrogen bond along the a-axis. One molecule is H-
bonded to two neighboring molecules. The N/O 
distance and the NH/O angle are 2.721 Å and 166°, 
respectively. 

 
iii) DMQA.9 The molecule is entirely planar. The 

molecules are stacked along the a-axis with significant 
overlap in a herringbone fashion as shown in Fig. 2(d). 

 
iv) 2,9-DMQA.4 The molecule is entirely planar and 

belongs to the point group of Ci. There is a two-
dimensional (sheet-like) H-bond network similar to that 
in diketopyrrolopyrrole pigments.15 Each molecule is 
H-bonded to two neighboring molecules: four H-bonds 
per molecule. As shown in Fig. 2(e), there are steps of 
about 0.87 Å between the molecular planes of the H-
bonded molecules. The present molecular arrangement 
is characteristic of modifications I and II of 
diketopyrrolopyrrole16,17 and thiazine-indigo pigments.18 
The N/O distance and NH/O angle are 2.850 Å and 
150°, respectively. 

 

  Table 1. Crystallographic parameters. 
 γ-QA3 MMQA6 DMQA9 2,9-DMQA4 
Formula C20H12N2O2 C21H14N2O2 C22H16N2O2 C22H16N2O2 
Crystal system monoclinic orthorhombic monoclinic triclinic 
Space group P21/c Pbca P21/c P–1 
Z 2 8 2 1 
Molecular weight 312.32 326.35 340.37 340.37 
Molecular symmetry Ci C1 Ci Ci 
a (Å) 13.70(1) 13.517(2) 4.928(3) 3.865(3) 
b (Å) 3.84(1) 7.340(2) 11.103(3) 6.372(3) 
c (Å) 13.35(2) 29.033(2) 14.462(2) 15.78(2) 
α (°) 90 90 90 93.94(6) 
β (°) 100.09(9) 90 98.39(2) 91.51(8) 
γ (°) 90 90 90 100.00(6) 
V (Å3) 691.5 2880.5 782.8 381.5 
T (K) 223 93 223 123 
R1 0.073 0.072 0.049 0.056 
Dipole moment (D) a 0 0.44 0 0 

  a Determined by MOPAC Ver. 6 using the AM1 Hamiltonian. 
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Figure 2. Molecular arrangement. (a) QA, (b) MMQA ((a,c) plane), (c) MMQA ((b,c) plane), (d) DMQA, (e) 2,9-DMQA. The dotted lines 
designate N–H·· ·O intermolecular hydrogen bonds. 

 
 
Solution Spectra of QA Derivatives 

Figure 3 shows solution spectra in dimethylsulfoxide 
for QA, MMQA, DMQA and 2,9-DMQA. There observed 
progressions of the absorption bands starting from 523 nm 
for QA, MMQA and DMQA and 532 nm for 2,9-DMQA. 
Since the longest-wavelength band is quite steep and the 
absorption bands are equally spaced in all compounds, the 
absorption bands are assigned to the 0-0, 0-1 and 0-2 as 
shown in Fig. 3, indicating that one single electronic 
transition is coupled with vibrational transitions. The MO 
calculation also bears out the present assignment that shows 
there is one single π-π* electronic transition in the visible 
region. 

Polarized Reflection Spectra Measured on Single 
Crystals 

Figure 4 shows the polarized reflection spectra 
measured on the (001) plane of 2,9-DMQA single crystals 
together with its projection onto the (a,b) plane. A 
prominent reflection band appears around 572 nm together 
with two small bands around 480 and 530 nm for 

polarization parallel to the direction of the N–H·· ·O 
intermolecular hydrogen bonds as designated by the dotted 
line in Fig. 4(b). On the other hand, these bands are 
completely quenched for polarization perpendicular to this 
direction. This clearly indicates that all the reflection bands 
belong to one single electronic transition and that the 
direction of the transition dipole points along the 
intermolecular hydrogen bond. The present result is also 
borne out by the MO calculation which shows that there is 
only one electronic transition in the visible region and that 
the direction of the transition dipole appears along the 
intermolecular H-bond. Then, it follows that the longest-
wavelength band (around 572 nm), the second-longest 
(around 530 nm) and the third-longest band (480 nm) in 
Fig. 4 correspond to the 0-0, 0-1, 0-2 transitions in solution 
spectra, respectively. The present one-to-one 
correspondence between solution and solid-state spectra 
indicates that there is a large bathochromic shift (540 → 
580 nm) on going from solution to the solid state in 2,9-
DMQA. 
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Figure 3. Solution spectra in dimethylsulfoxide for QA, MMQA, 
DMQA, and 2,9-DMQA. 

 

 

Figure 4. (a) Polarized reflection spectra measured on the (001) 
plane for 2,9-DMQA and (b) the projection of the crystal structure 
onto the (a,b) plane. The dotted line in (b) designates the direction 
of the intermolecular N–H·· ·O hydrogen bond. 

 

 

Figure 5. Comparison of the polarized reflection spectra for QA, 
MMQA, DMQA and 2,9-DMQA. Only the reflection bands 
corresponding to the direction of the transition dipoles are plotted. 

 
 

The similar behavior described above is also observed 
for QA, MMQA and DMQA and their result is summarized 
in Fig. 5. The longest-wavelength band of QA, MMQA and 
2,9-DMQA is displaced toward longer wavelengths, as 
compared with that of DMQA, in the sequence of MMQA, 
QA and 2,9-DMQA. This is the sequence of increasing 
number of intermolecular hydrogen bonds: no H-bond in 
DMQA, two H-bond in MMQA and four in QA and 2,9-
DMQA. This result clearly suggests that the N–H·· ·O 
hydrogen bond is responsible for the bathochromic shift 
upon crystallization. 

Discussion 

Bathochromic Shift Upon Crystallization –  
Effect of H-Bond On The Spectral Shift  

As pointed out in our previous investigations,19,20 the 
excitonic interaction between transition dipoles is of crucial 
importance in pigment systems where the absorption 
coefficient of the component molecule is quite large and the 
molecules are periodically ordered. The resonance 
interaction (∆E) is described by the following equation21: 
∆E = |µ|2(1–3cos2θ)/r3 where µ denotes the transition dipole, 
r and θ are the distance and angle between two transition 
dipoles, respectively. The term |µ|2 determines the strength 
of the interneighbor coupling while the geometrical term 
(1–3cos2θ)/r3 the downward or upward shift of the excited 
state energy level, leading to the bathochromic or 
hypsochromic displacement of the absorption band. The 
critical angle is 54.7° below which the bathochromic shift 
will occur and above which the hypsochromic shift will 
result. The maximum bathochromic shift appears when the 
transition dipoles are arranged in a fashion “head-to-tail” (θ 
= 0°). 

Strength of the Hydrogen Bonds 
The geometrical consideration of the N/O distance and 

the NH/O angle gives a measure for the strength of the N–
H·· ·O hydrogen bond. If the distance is short and the angle 
is near to 180°, this is a sign for a strong hydrogen bond. As 
judged from the result of the structure analysis, the H-bond 
is the strongest in QA and becomes weaker in the order of 
MMQA and 2,9-DMQA. 

Conclusions 

The QA derivatives with different H-bond forming 
characteristics yield a variety of crystal structures. γ-QA, 
2,9-DMQA and MMQA are found to form three-
dimensional (“hunter’s fence”), two-dimensional (sheet-
like) and one-dimensional (chain-like) hydrogen bond 
networks, respectively. As judged from the crystal structure, 
the hydrogen bond is the strongest in QA and becomes 
weaker in the order of MMQA and 2,9-DMQA. The extent 
of the bathochromic shift in QA derivatives increases with 
the number of intermolecular hydrogen bonds and can 
mostly be interpreted as being due to resonance interactions 
between transition dipoles aligned in a fashion “head-to-
tail” in all QA derivatives. 
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