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Abstract 

Disperse dye inks are used in the inkjet textile printing of 
polyester fabrics. We aimed at developing a black disperse 
dye ink consisting of yellow, magenta, and cyan dyes that 
met the exacting requirements of safety, image durability, 
and storage stability. One difficulty we met was dye 
particles tending to aggregate/agglomerate, leading to 
sedimentation and the threat of head clogging and/or 
inferior color reproduction. We discovered that rapid 
adsorption and desorption exchange of dispersants and the 
wetting ability of the dyes’ surfaces appeared to control the 
system's stability. Based on this, we succeeded in 
developing a stable black disperse dye ink. 

Introduction 

Inkjet printing, with its low printer and running costs, its 
wide variety of compatible recording media, and its many 
other attractions, has proliferated in consumer and 
commercial markets alike. Of special note among emerging 
commercial applications is textile inkjet printing as a digital 
method of printing samples, designs, and coupons, as well 
as for outdoor usage with signage, flags, and banners.1 

Although textile and paper inkjet printing share the 
same basic technologies, textile inkjet printing inks must be 
designed specifically for the substrates and delivery 
mechanisms with which they are matched. This means 
fiber-specific colorants chosen for such fabrics as cotton, 
silk, and polyester. 

Preferred with polyester fabrics are disperse dye inks in 
the form of hydrophobic dyes dispersed to small crystalline 
form in an aqueous medium. After printing with such dye 
inks, polyester fabrics are heated and the dyes melt, 
sublime, and/or dissolve into the fabric’s fibers, where they 
fix. 

For this application, dispersed dyes must meet three 
requirements. First, image stability requires that the dyes 
provide images that resist such agents of degradation as 
light, water, sweat, and abrasion. Second, safety requires 
that dyes providing image stability also not be toxic, 
carcinogenic, or otherwise hazardous to health, especially 
because these dyes will often come into direct contact with 
human skin. Third, ink storage stability requires that these 
stable and safe dyes remain in dispersed form, without 

aggregation and/or agglomeration, for a matter of years. If 
dispersed dye particles were to aggregate or agglomerate 
during storage, the larger particles thus formed would settle 
into a sediment, leading to filter and print head clogging and 
to inferior color reproduction.  

But while the weight of satisfying these demands falls 
directly on the design of the dyes involved, only a small 
range of dyes exist to be chosen from, and therein lies the 
challenge. In this paper, we present our efforts to develop a 
safe and stable black disperse dye ink. 

Experimental 

Preparation of Black Inks 
Yellow, magenta, and cyan dyes were dispersed 

independently with a beads-mill disperser to yield 
commensurate dispersions. The three dispersions were then 
mixed as in Table 1 to produce three black inks. 

Table 1. Composition of three black inks 
Ink # Dispersant/carrier medium Auxiliary agent 

1 Optimized for each dye Not added 
2 Same for all dyes Not added 
3 Same for all dyes Added 

 
   
Evaluation of Mutagenicity 

The mutagenicity of the inks was tested through 
conventional AMES testing with Salmonella typhimurium 
TA98, Salmonella typhimurium TA100, and E.Coli 
WP2uvrA/pKM101.  
  
Evaluation of Dye Surface Energies 

Each dye was palletized, and its contact angles with 
water, nitromethane, and diiodometane were measured with 
a CA-V contact angle meter (Kyowa Interface Science Co., 
Ltd.). The surface energies of the dyes' were calculated 
from the contact angles via Young-Fowkes equilibrium. 
  
Evaluation of Ink Properties 

Each ink was centrifuged at a common speed and the 
absorbance of the supernatant measured at intervals with a 
U-3200 spectrophotometer (Hitachi). The sedimentation 
property of the inks was expressed as the ratio between the 
initial and the centrifuged absorbencies. 
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The viscoelasticity of the inks were measured with an 
MCR 300 modular rheometer (Physica Messtechnik 
GmbH). 

Electron microscopic images were obtained with an S-
800 scanning electron microscope (Hitachi). 

Light fastness, water fastness, and the fastness of color 
to perspiration, to washing and laundering, and to abrasion 
were evaluated according to corresponding Japan Industrial 
Standards. 

Results and Discussion 

Image Durability 
A dye's stability and durability against light, water, 

sweat, and abrasion controls the stability and durability of 
the inkjet-printed textile image. We examined the dyes' 
stability ratings in conventional screen-printing systems, 
and chose stable yellow, magenta, cyan, and black dyes. We 
then confirmed their stability and durability in inkjet textile 
prints. 

 
Dye Safety2 

Dye safety was of paramount concern. We evaluated 
the mutagenicity of selected stable dyes, and most tested 
positive in AMES testing. Unfortunately, no black dye 
tested negative, but we did find yellow, magenta, and cyan 
dyes that satisfied dye safety as well as specifications of 
color and image stability and durability. Thus we were 
resigned to using a combination of yellow, magenta, and 
cyan dyes. 
 
Storage Stability 

The sedimentation properties of the inks are presented 
in Fig. 1, where the horizontal axis indicates relative 
centrifugal force and the vertical axis indicates relative 
absorbance. The viscoelasticities of Ink 1, Ink 2, and Ink 3 
are summarized in Fig. 2, where the horizontal axis 
indicates shear rate, and the vertical axis indicates viscosity. 
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Figure 1. Sedimentation properties of three inks 
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Figure 2. Viscoelasticities of three inks 

 
Figure 1 shows the relative absorbance of Ink 1 

decreasing as centrifugal force increases, reflecting 
sedimentation in Ink 1. In fact, Ink 1 yielded particles large 
enough to be captured in a mesh filter. The flocculation 
seen in the Fig. 3 SEM image shows small primary particles 
aggregated/agglomerated to form larger particles. To clarify 
the mechanism involved, we analyzed the change in 
dispersant adsorption in the supernatant over time. 
Measuring the concentration of Ink 1’s unadsorbed 
dispersant over a number of days, we calculated the ratio of 
the initial concentration to subsequent concentrations. As 
seen in Fig. 4, the concentration of the unadsorbed 
dispersant decreased.  

We optimized dispersants and carrier media for each 
dye in order to control dispersion speed, and so could not 
use the same dispersant for all three dyes. We assumed that 
a rapid adsorption and desorption exchange of the 
dispersant occurred at the surface, making the system 
unstable, resulting in dye aggregation/agglomeration that 
formed larger particles, which finally led to sedimentation. 

 

 
Figure 3. Ink 1 flocculation 
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Figure 4. Ink 1, decrease of unadsorbed dispersant 

 
In Fig. 2, the viscosity of Ink 2 was high at low shear 

rates, suggesting that Ink 2 possessed structural viscosity. 
Like Ink 1, Ink 2 developed particles that were large enough 
to be captured in a mesh filter, a SEM image of which is 
seen in Fig. 5. Spectroscopy identified these particles as the 
aggregation/agglomeration of Dye C. To investigate the 
mechanism involved, we measured the surface energies of 
Ink 2’s three dyes. The results are summarized in Fig. 6, 
where the vertical axis indicates the wetting ability of the 
dyes: the bigger the value, the more easily it wets. Fig. 6 
shows that Dye C had the poorest wetting ability of the 
dyes. From this we assumed that not enough dispersant 
could adsorb onto the surfaces of Dye C and of the particles 
of the dye aggregate/agglomerate. 

 
 

 

Figure 5. Ink 2 flocculation 
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Figure 6. Ink 2 dye surface energies 

 
In response to these results, we used the same 

dispersant for all the dyes to avoid the rapid adsorption and 
desorption exchange of the dispersant. Additionally, we 
used an auxiliary agent to compensate for the poor wetting 
ability of Dye C. This combination constituted Ink 3, and, 
as seen in Fig. 1 and Fig. 2, Ink 3 did not sediment or 
possess structural viscosity. 

Conclusion 

Our objective was a black disperse dye ink for textile inkjet 
printing that was safe, was highly resistant to light, water, 
sweat, and abrasion, and had high storage stability. 
Combining three dyes, we formulated several black disperse 
dye inks. We encountered the obstacles of rapid adsorption 
and desorption exchange of dispersants and poor dye 
surface wetting ability. However, after adopting an 
appropriate single dispersant and an auxiliary agent, we 
succeeded in developing black disperse dye ink that met our 
objective. 
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