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Abstract 

Investigation of filled composite materials is connected with 
polymer adsorption on a solid surface. Studies of adsorption 
from polymer solutions on solid surfaces are mainly aimed 
at revealing how the value of adsorption depends on the 
thermodynamic quality of the solvent, polymer 
concentration in the solution, molecular mass and 
molecular-mass distribution of polymer, temperature, nature 
of adsorbent, and surface charge and charge density, in 
polyelectrolytes. The adsorption systems containing 
macromolecules and dispersed particles of the solid phase 
are rather complex, because they have features of both 
lyophobic and lyophilic disperse systems. 

We studied adsorption of polystyrene with molecular 
mass 5.7 × 105 from a solution in toluene on three samples 
of commercial-grade carbon: TM-15, TM-50, and TM-75 
with specific surface area equal to 15, 50 and  
75 m2/g, respectively, under various experimental 
conditions. The carbon powder was preliminarily dispersed 
in a particular volume of solvent, and this dispersion was 
mixed with an equal volume of solution and a double 
concentration of polymer. 

Preliminary dispergation of technical carbon in solvent 
influences on an adsorption process. In this connection the 
solvent concentration, under which non-separated technical 
carbon particles are appeared, is decreasing. 

Introduction 

Studies of adsorption from polymer solutions on solid 
surfaces are mainly aimed at revealing how the value of 
adsorption depends on the thermodynamic quality of the 
solvent, polymer concentration in the solution, molecular 
mass and molecular-mass distribution of polymer, 
temperature, nature of adsorbent, and surface charge and 
charge density in polyelectrolytes. The adsorption systems 
containing macromolecules and dispersed particles (DP) of 
the solid phase are rather complex, because they have 
features of both lyophobic and lyophilic disperse systems. 
Naturally, the two components with opposite aggregation 
properties affect each other, causing transition of the system 
from the initial state characterized by two dissimilar 
equilibria established for each component to the final state 
with a common equilibrium in the system. Such transitions 

and the ratio between their rates determine the value of 
adsorption. 

We studied adsorption of polystyrene with molecular 
mass 5.7 × 105 from a solution in toluene on three samples 
of commercial-grade carbon: TM-15, TM-50, and TM-75 
with specific surface area equal to 15, 50, and 75 m2/g, 
respectively, under various experimental conditions. 
Adsorption was studied by two procedures with different 
initial development of aggregation processes: (1) the 
solution with predetermined polymer concentration was 
mixed with a particular amount of initial dry adsorbent 
(carbon), and (2) the carbon powder was preliminarily 
dispersed in a particular, volume of solvent, and this 
dispersion was mixed with an equal volume of solution and 
a double concentration of polymer. 

Hence, the ratio between the concentrations of polymer 
and solid phase and the equilibrium volume of the 
adsorption system were the same in both procedures, and 
we only changed the initial conditions of dispersion of 
carbon powder and initial equilibrium between individual 
macromolecules and their aggregates in the polymer 
solution. After the adsorption equilibrium was established 
(in a day), we separated the system by filtration and 
determined the mass of adsorbed polymer by gravimetry. In 
addition, we studied the light transmission of the 
equilibrium polymer solutions after adsorption, because we 
discovered that separation was incomplete. Figure 1 
represents the results obtained. 

Studying the sediments, we indirectly estimated the 
aggregation stability of the carbon samples and the 
influence of macromolecules on this stability (Fig. 2). The 
aggregation stability in the pure solvent decreased in the 
order TM-75 > TM-50 > TM-15. 

The presence of DP of solid phase in the adsorption 
system can cause errors in the measurements of equilibrium 
polymer concentration after adsorption. These errors may 
have two origins. First, the DP of the solid phase penetrated 
into the macromolecular aggregates may remain in the 
equilibrium polymer solution after its separation, thus 
leading to overestimation of polymer concentration.1 
Secondly, the DP of the solid phase may form local 
coagulation structures with the pores filled with the solvent, 
which are inaccessible for macromolecules. This effect also 
increases the polymer concentration in equilibrium solution. 
Both these processes can take place simultaneously.2 
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Our studies of light transmission of the equilibrium 
polymer solutions after adsorption showed that 
transmittance begins to decrease after a certain polymer 
concentration is attained. Therefore, the carbon particles are 
not completely separated from the solution (Fig. 1b). Due to 
the presence of dispersed carbon particles in equilibrium 
polymer solutions after separation of sediment, the methods 
used to determine the polymer concentration in solution 
overestimate the polymer concentrations and, 
correspondingly, underestimate the adsorption of polymer. 
The polymer concentrations at which the carbon particles 
are left in the equilibrium polymer solutions decrease as one 
passes from TM-75 to TM-15. If carbon was preliminarily 
dispersed, these concentrations also decrease, i.e., a larger 
correction must be made to the value of adsorption 
measured in this case. Such corrections can be made from 
the calibration plots of suspension transmittance versus 
carbon concentration. 

The equilibrium adsorption system contains local 
porous coagulation structures filled with the solvent. This is 
the second cause that complicates adsorption and leads to 
errors in determination of the adsorption value. In this case, 
the solvent is trapped by forming coagulation structures and 
redistributed between solid and liquid phases of the 
adsorption system. Macromolecules may also be trapped 
together with the solvent. 

 

Figure 1. Dependences of (a) values of adsorption and (b) light 
transmittance of equilibrium polymer solutions after adsorption on the 
equilibrium polymer concentration for the following samples of 
carbon: (1,2) TM-75, (3,4) TM-50, and (5,6) TM-15.  

The experiments on adsorption were performed by (1,3,5) the first and (2,4,6) 
the second procedures described in the text. 

 

Figure 2. Dependences of coagulation volume (Vc) on the 
equilibrium polymer concentration for the following samples of 
carbon: (1,2) TM-75, (3,4) TM-50, and (5,6) TM-15.  

The experiments on adsorption were performed by (1,3,5) the first and (2,4,6) 
the second procedures described in the text. 

 
 
With respect to the solid phase, an experiment on 

adsorption should also be considered as a process of 
disaggregation of powder particles in polymer solution. It is 
useful to discuss the following four cases: (1) the DPs are 
completely disaggregated, and adsorption of 
macromolecules enhances the aggregation stability of these 
particles; (2) the DPs are completely disaggregated, and 
adsorption of macromolecules reduces the aggregation 
stability of these particles, thus causing flocculation; (3) the 
DPs are partially disaggregated and form aggregates of a 
certain size, and adsorption of macromolecules enhances the 
aggregation stability of these particles; and (4) the DPs are 
partially disaggregated and form aggregates of a certain 
size, and adsorption of macromolecules reduces the 
aggregation stability of these particles. 

In the first case, disaggregation of the DPs to individual 
particles and stabilization of these particles by the adsorbed 
macromolecules cause significant values of limiting 
adsorption, which do not depend on the pattern of mixing 
the components. Preliminary disaggregation of DPs may 
just accelerate the equilibration. 

In the second case, disaggregation of the DPs to 
individual particles and their flocculation by the adsorbed 
macromolecules lead to the formation of various 
coagulation structures. In this case, the value of limiting 
adsorption substantially depends on the ratio between the 
rates of disaggregation of the DPs and their flocculation 
caused by polymer adsorption on these particles. 
Preliminary disaggregation of particles enhances adsorption 
of macromolecules. 

Let us consider the third case. If the solvent does not 
facilitate disaggregation of the DPs and if adsorption of 
macromolecules enhances the aggregation stability of these 
particles, then one may observe an adsorption isotherm 
slowly reaching a plateau or an isotherm without saturation. 
It is difficult to find out whether the adsorption saturation is 
attained in such systems.  
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The fourth case implies that disaggregation of DPs in 
the solvent is incomplete and the particles lose their stability 
on adsorption of macromolecules. Apparently, this is the 
most common case for flocculation of dispersions by 
polymers. This pattern can explain significant friability of 
flocculated sediments, which is determined by the friability 
of the aggregates of DPs and the friability of the forming 
structure. 

With respect to the polymer solution, an experiment on 
adsorption can be considered as adsorption of individual 
macromolecules and their aggregates. The proportion 
between these species is determined by the nature of 
polymer and solvent, and by concentration of 
macromolecules.3 As the concentration of polymer in 
solution rises and the equilibrium "individual 
macromolecules ↔ macromolecular aggregates" shifts to 
aggregates, the equilibration time increases and the 
influence of macromolecules on the aggregation stability of 
particles and formation of coagulation structure is changed. 
The shift of equilibrium to aggregates is more pronounced 
when one follows the second procedure of experiments 
instead of the first one. This fact can explain why a more 
friable coagulation structure is formed at low polymer 
concentrations, when adsorption on TM-15 is studied by the 
second procedure or adsorption on TM-75 is studied by the 
first procedure (Fig. 2). We also note that the concentration, 
corresponding to the appearance of carbon particles that 
cannot be separated from the solution, is lower when one 
passes from the first procedure of the experiments on 
adsorption to the second one (Fig. 1b). Possibly, this is the 
case because such particles may appear when the solution 
contains macromolecular aggregates of a certain size.1 

Conclusion 

Hence, when one studies the adsorption of polymers on 
dispersed adsorbents, the classical concept of adsorption as 

the variation of the substance concentration near the 
interface is indefinite because the sizes of adsorbent and 
adsorbate are comparable. Then, it is more correct to speak 
of aggregation of the DPs of adsorbent and adsorbate. The 
properties of these aggregates depend on the proportion 
between the interacting components. Analyzing the effects 
discussed, we see that sometimes one cannot use the 
experimental values of Γ to characterize the affinities of 
adsorbent and adsorbate. Rather, these values may be used 
to estimate the kinetic control of polymer adsorption. 
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