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Abstract 

New mechanisms of paper separation and feed systems 
were proposed to realize a highly reliable paper-handling 
system for printers. The new paper-separation system con-
sisted of a pair of parallel electrodes and a paper pile be-
tween the electrodes. In this system, electrostatic separation 
of a piece of paper was realized always at the top of the pile 
when the applied voltage exceeded a threshold to generate 
electrostatic force larger than the weight of a paper. The 
threshold voltage was about some hundred volts, and it 
agreed with the numerical value calculated by the FEM for 
the electrostatic field. Additionally, lateral pull-off force of 
a paper from the attached electrode was measured to con-
firm the required force to feed the separated paper. The 
value was some µN/mm2 that was also in the same order as 
the calculated pull-off force estimated from the friction co-
efficient between them and the electrostatic force between 
the plate electrode and the adhered paper. Two kinds of new 
paper-feed systems have been also developed. One con-
sisted of a pair of parallel plate electrodes and two sheets 
with slanted fibers. In this system, vertical vibration of the 
electrodes was realized when the alternating electric field 
was applied between the electrodes. Paper attached between 
the sheets was fed in the horizontal direction in the order of 
1 mm/s utilizing the vibration and anisotropic feature of the 
friction of slanted fibers. Another system consisted of an 
electrostatic particle conveyer with parallel electrodes, par-
ticles, and a sheet of paper on them. The paper is fed about 
100 mm/s almost synchronized with the linear motion of 
particles driven by traveling electrostatic field. 

Introduction 

A friction roller is being used for a paper separation and 
feed system in printers. However, because friction depends 
on paper characteristics and environmental conditions, 
miss-feeds sometimes take place when the friction roller is 
deteriorated. In this study, a new paper separation and feed 
systems are proposed to realize a highly reliable paper-
handling system for printers.1 
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Figure 1. Experimental set-up of electrostatic paper-separation 
system. (1: paper pile (five sheets of paper), 2: power supply, 3: 
applied electrode, 4: ground electrode) 

 

Table 1. Properties of Papers Used for Experiments. 
 

thickness 
mm 

weight 
µN/mm2 

conductivity 
σ S/m 

relative 
permittivity 

εr 

PPC 0.10 0.68 3.9×10−10 1.70 

pasteboard 0.32 2.04 5.8×10−10 1.82 

tracing 0.05 0.49 1.5×10−10 2.86 

glassine 0.03 0.29 7.6×10−11 3.52 

double-side 
coated 

0.12 1.56 3.3×10−10 1.48 

 

Paper-Separation Mechanism 

System Configuration and Experimental Procedure 
An experimental set-up shown in Fig. 1 was con-

structed to demonstrate the separation of a sheet of paper on 
the top of a paper pile. The set-up consisted of a pair of par-
allel electrodes and the paper pile between the electrodes. 
High voltage was applied between the electrodes by a DC 
power supply (Matsusada Precision Inc., HVR-10P, 0~+10 
kV). Properties of papers (L90/W30 mm) used for experi-
ments are summarized in Table 1. 

Modeling 
In this system, electrostatic separation of a sheet of pa-

per was realized when the applied voltage exceeded the 
threshold to generate electrostatic force larger than the pa-
per weight. A numerical calculation was conducted to de-
termine the threshold voltage and to confirm that only the 
top paper is separated with this system. The electrostatic 
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force per unit area f applied to the paper was calculated 
from the difference of the Maxwell’s stress between the up-
per and lower surfaces of the paper. 

( )2
0

1
2

n Erf ε ε= ⋅ ,     (1) 

where ε0 is permittivity of free space, εr is the relative per-
mittivity, n is a unit normal vector to the boundary, and E is 
the electric field (= − φ∇  , φ : potential). The electric field 
was calculated with the Poisson’s equation (2) and the 
conservation of charge (3). 

( )0 rε ε φ ρ∇ ⋅ − ∇ = ,     (2) 

( ) 0=
∂
∂

+∇−⋅∇
t
ρ

φσ ,     (3) 

where ρ  is the charge density and σ  is the conductivity of 
the paper. Boundary and initial conditions are as follows. 

φ  = V0  on the applied electrode, where V0 

is the applied voltage. 
φ  = 0  on the ground electrode. 
n·∇φ = 0  on other insulated boundaries. 
ρ = 0  at t = 0. 

Distributions of the potential and the charge density 
were numerically calculated with the Finite Element 
Method. Figure 2 shows the geometries and linear triangular 
mesh patterns for the FEM calculation. 
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Figure 2. Geometries and linear triangular mesh patterns for FEM 
calculation. 

Results and Discussion 
Figure 3 shows an example of the calculated time re-

sponse of the electrostatic force on the top and second pa-
pers and the charge density in the top paper. Because the 
time constant was about 0.03 seconds, the force applied to 
the paper was almost constant and it was applied only to the 
top paper at the time 0.1 second after the step voltage appli-
cation. This is confirmed by Fig. 4 that shows the time re-
sponse of the potential distribution around the paper pile. 
The electrostatic field in the paper was gradually decreased 
and it almost vanished at the time 0.1 second after the step 
voltage application. Thus the electrostatic field, the gradient 
of the potential, was large at the upper face of the top paper 
but almost no field was generated in the paper pile. This 
feature means only the top paper is separated from the pile.  

Figure 5 shows the calculated electrostatic force on the 
top paper. It is assumed that the paper separates from the 

pile and adheres to the applied electrode when the applied 
voltage exceeds the threshold that the electrostatic force is 
equal to the paper weight. Figure 6 shows the calculated and 
measured threshold voltage. The calculated roughly agreed 
with experimental results. Although the time constant is de-
termined by the conductivity and permittivity of the paper, 
the threshold voltage based on the saturated force is solely 
dependent on the paper weight. 
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Figure 3. Time response of electrostatic force and charge density. 
(PPC, 5mm gap, V0 = 2,000 V) 

 

 
(a) 0 s 

 
(b) 0.01 s 

 
(c) 0.1 s 

Figure 4. Potential distributions in the vicinity of paper at the des-
ignated time after step voltage application. (PPC, 5 mm gap, V0 = 
2,000 V) 
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Figure 5. Calculated electrostatic stress on the right end of the top 
paper and paper weight one second after application of step volt-
age. (PPC, 5.0 mm gap) 
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Figure 6. Comparison of measured and calculated threshold volt-
age of paper separation. 
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Figure 7. Lateral separating force of paper from separating elec-
trode. (paper: PPC) 

 
 
The lateral pull-off force of a paper from the attached 

electrode was measured to determine a required force to 
feed the separated paper. The result is shown in Fig. 7. 
Force from the plate electrode was almost same with that 
from the roller electrode, because the paper was wrapped up 
around the electrode due to the electrostatic adhesion force. 
The force was in the order of µN/mm2 that was also in the 
same order as the calculated pull-off force estimated from 
the Maxwell’s stress and the measured friction coefficient 
between the applied electrode and the adhered paper. 

Paper-Feed Mechanisms 

Paper-Feed Mechanism with Slanted Fiber Sheets 
Figure 8 shows the paper-feed mechanism with slanted 

fiber sheets. It consisted of a pair of parallel plate electrodes 
and two sheets (L20/W20/T3 mm) with slanted fibers. The 
bottom electrode was fixed and the left end of the upper 
electrode was pined. AC voltage of rectangular wave was 
applied between the electrodes to generate vertical vibration 
of the electrodes. The paper attached between the sheets in 
contact with fibers was fed in the horizontal direction utiliz-
ing the vibration and anisotropic feature of the friction be-
tween slanted fibers and the paper. 
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Figure 8. Schematic diagram of paper-feed system utilizing sheets 
with slanted fibers. (1: AC power supply, 2: upper plate electrode, 
3: lower plate electrode, 4: sheets with slanted fibers, 5: paper) 
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Figure 9. Speed of paper feed in paper-feed mechanism with 
slanted fiber sheets (1,000 V0-p) 

 
 
Figure 9 shows the measured paper-feed speed. The 

speed was increased with the increase of the frequency but 
it decreased if the frequency exceeded 26 Hz that coincided 
with the critical frequency of the system. Because the real-
ized velocity was only the order of mm/s, the system is not 
suitable for the principal paper feeder but for a precise sec-
ondary positioning of the paper. 

Paper Feed Utilizing Traveling Wave 
Figure 10 shows another new paper-feed system utiliz-

ing traveling wave transport of particles. Spherical particles 
(φ 100 µm, 0.005 g) were set on an electrostatic particle 
conveyer.3 The conveyer consists of parallel electrodes and 
four-phase traveling electrostatic wave was applied to the 
electrodes to transport particles on the conveyer. Traveling 
wave propagation was achieved utilizing four amplifiers 
(Matsusada Precision Inc, Tokyo, HOPS-1B3) and five 
function generators (IWATSU, Tokyo, SG-4105), one of 
which was used to control phase-differences of the other 
four generators. By virtue of friction force, a sheet of paper 
on particles was linearly driven with the linear motion of 
particles.  

Figure 10 shows demonstrated paper-feed speed. At 
low frequency paper feed was synchronized with the fre-
quency of the traveling wave, however at higher frequency 
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it delayed to the wave speed. Demonstrated maximum 
speed was about 0.1 m/s at about 200 Hz. 
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Figure 10. Experimental set-up of paper-feed system utilizing elec-
trostatic particle conveyer. (1: function generators, 2: amplifiers, 
3: parallel electrodes on plastic substrate, 120 mm width and 250 
mm length, 4: insulation film, 5: particles, 6: paper) 
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Figure 11. Paper speed of paper-feed system utilizing electrostatic 
particle conveyer. (applied voltage: 800 V0-p). 

Concluding Remarks 

The following new electrostatic paper separation and feed 
systems were proposed and demonstrated. 
(1) system to separate a top paper from a paper pile 
(2) system for a precise positioning of a paper by virtue of 

anisotropic feature of the friction of slanted fibers 
(3) system to feed a paper with an electrostatic particle 

conveyer 
 
These systems are expected to realize a highly reliable 

and precise paper handling for laser printers. 
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