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Abstract 

The surface charge density from a physically plausible 
volume charge density in the Charge Generation Layer 
(CGL) is numerically obtained and analyzed.  The initial 
CGL volume charge density is Gaussian in the vertical 
direction and its lateral variation is obtained from the 
convolutional laser exposure equations and empirical 
Photo-Induced Discharge Characteristics (PIDC).  The ideal 
surface charge density without lateral broadening obtained 
from the PIDC is compared with the resulting charge 
density after all the holes arrive at the surface.  Various 
Charge Transport Layer (CTL) thicknesses, line widths, and 
laser spot sizes are used to characterize the effect of these 
parameters.  It is found that the laser spot size has a more 
significant impact on line broadening than the CTL 
thickness.   
 The field dependence of mobility was examined in 
isotropic materials using a diagonal tensor matrix. The field 
dependent mobility resulted in submicron line broadening 
even for a large CTL thickness. Thus line blurring arising 
from charge transport phenomena is negligibly small in 
isotropic materials.  

Introduction 

Charge transport phenomena in photoconductors play a 
critical role in electrophotographic image resolution.  
Lateral motion of photogenerated charge carriers during 
their transit from the CGL to the photoconductor (PC) 
surface results in line broadening that can ultimately limit 
the resolvability of thin lines. Line broadening is caused by 
mutual repulsion of charge carriers. Many attempts have 
been made to characterize the intrinsic limitation of image 
resolution. For example, Williams approximated line 
spreading with a thin charge strip and showed that total 
broadening of an isolated line (two edges) for a 15 µm 
layered PC can be as much as 20 µm1; Chen calculated the 
line width as a function of pixel size to PC thickness ratio 
using a Gaussian surface charge distribution at the 
CGL/CTL boundary and showed that the line width gets 
progressively larger as the PC thickness gets larger.2 In this 
paper, we incorporate a physically reasonable CGL volume 
charge density in our unipolar charge transport calculation 

using both field-independent and field-dependent hole 
mobilities. This volume charge density is Gaussian in the z 
direction (see Figure 1) and its lateral variation is obtained 
from the exposure equations and empirical PIDC data.1,3  
The generated holes are injected into the CTL and a set of 
equations describing the current density, charge density, and 
electric potential in the PC is solved by a numerical iterative 
method.  The surface charge distribution after all the holes 
arrive at the PC surface is calculated as several PC and laser 
parameters are varied. 
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Figure 1. Layered PC 

Surface Charge Density without Line 
Broadening 

The coordinate system used in this report is shown in Figure 
1.  Before exposure, the PC surface is charged with a charge 
roller to a potential, Vdark.  The corresponding initial surface 
charge density is 

l+
=

d
VdarkPCεε

σ 0
0      (1) 

 
where d is the CTL thickness, l is the CGL thickness, and 
εPC is the dielectric constant of the PC.  When the laser beam 
penetrates the CTL, the generated electrons in the CGL are 
assumed to neutralize the counter charge in the ground 
substrate instantaneously while the holes are injected into 
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the CTL and move toward the surface.  The initial volume 
charge distribution of the holes in the CGL is approximated 
with 
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where k0 is a calibration factor and az is calibrated to yield 

( ) 52 10)2/(exp −=− lza .   (3) 

),( yxPIDCσ  is obtained directly from PIDC data. An 
example PIDC curve is shown in Figure 2. Typically 
potential is measured to describe the discharge 
characteristics of a photoconductor.3,4 The measured 
potential is then converted into the corresponding surface 
charge density using the parallel-plate charge density 
equation in (1).  
 In addition to the Gaussian profile in (2), a raised cosine 
window is applied in the z direction to make the both ends 
(z = 0 and z = l) go to zero smoothly. The numerator in (2) 
is the difference between the surface charge density after all 
the holes arrive at the surface and the surface charge density 
before the holes are injected into the CTL and hence it 
represents the quantity of holes generated in the CGL in 
C/m2.  We convert this surface charge density into the 
equivalent volume charge density by dividing it by the CGL 
thickness1 and an additional conversion factor k0.  k0 is 
calibrated by allowing the holes to arrive at the surface and 
comparing the resultant surface charge density with 

),( yxPIDCσ .  It is found that k0 = 1/3.81 works well for a 
26 µm photoconductor with Vdark = -600 volts.  The 
equivalent volume charge density in (2) is used as an initial 
condition when solving for the electric potential and current 
density in the next section. 

 

Figure 2. PIDC curve 

Surface Charge Density Calculation 

The following equations describe the motion of the holes 
injected into the CTL  
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where J is the current density vector, µ is the hole mobility 
tensor, and σ(x, y, t) is the time-dependent surface charge 
density. Just before the holes are injected into the CTL, t = 
0 and the volume charge density at t = 0 is given in (2). As 
similarly done by Chen,2 the differential equations (4)-(7) 
are written into finite difference equations and the problem 
is solved by a numerical iterative method. First, the 
potential at a given time t is obtained from Poisson equation 
(4) by the iterative relaxation method and the current 
density is calculated using the negative gradient of the 
potential. The surface charge density and the volume charge 
density at a later time t + ∆t are then calculated from (6) and 
(7), respectively. This iterative procedure is repeated until 
all the carriers arrive at the surface. For the sake of 
calculation efficiency, we eliminated the y variable in these 
equations by assuming infinitely long lines in the y direction.  

Field-Independent Mobility 

If we assume the carrier mobility is field-independent, the 
mobility tensor becomes a constant diagonal matrix 
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where µx, µy and µz are the mobilities in the x, y, and z 
directions, respectively. Simulation results presented in this 
section were obtained using a typical mobility of 10-6 
(cm2/Vs) in the x and z directions.5 Figures 3 and 4 show the 
resulting surface charge density of a single pixel wide line 
with various CTL thicknesses. The initial volume charge 
density in the CGL and the initial surface charge density 
were set to the same values in these simulations. As 
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previously reported,2 the line gets thicker as the CTL 
thickness increases. The horizontal dotted line in Figure 4 is 
the 1/e2 (13.5%) magnitude of the maximum surface charge 
density, which reveals that a typical PC (20 µm) 
experiences about one-micron line broadening. Figure 5 
shows the total charge in the PC as a function of time. The 
decay rate becomes smaller as the CTL thickness increases 
because a thicker PC allows the carriers to spread out more 
in the CTL. 
 Figure 6 shows the surface charge density from various 
line thicknesses while the CTL thickness is fixed at 26 µm. 
The difference in line broadening in these cases is less than 
a micron (between 2 µm and 3 µm). As the line thickness 
increases, the magnitude in the middle approaches that of 
the ideal surface charge density due to increasing line 
overlap. The total charge in the PC shown in Figure 7 
reveals that the carriers begin to arrive at the surface at the 
same time; but it takes longer for all of them to reach the 
surface as the line gets thicker since there are simply more 
carriers generated in the CGL.  
 Figure 8 shows the surface charge density of two lines 
separated by 42 and 62 µm. When they are 62 µm apart, the 
overlap of line broadening in the middle results in larger 
surface charge than ),( yxPIDCσ . Figure 9 shows the 
normalized surface charge density of a single pixel wide 
line. Also shown in Figure 9 is the case when the laser spot 
size and CTL thickness are reduced to one half of their 
original values, effectively maintaining the same spot size 
to CTL thickness ratio. More line broadening results from 
using the half spot size. This is due to the fact that the laser 
exposure energy is proportional to the laser power and 
inversely proportional to the spot size. Thus by reducing the 
spot size while maintaining the same laser power, we 
effectively increase the horizontal field strength, which in 
turn causes more line blurring.  
 
 
 
 

 

Figure 3. Surface charge density with varying CTL thickness 

 

Figure 4. Surface charge density with varying CTL thickness 

 

Figure 5.Total charge decay in the PC 

 

Figure 6. Surface charge density of 2, 3 and 5-pixel wide lines 
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Figure 7. Total charge decay of 2, 3 and 5-pixel wide lines 

 

Figure 8. Surface charge density of two lines 42 and 62 µm apart 

 

Figure 9. half spot and half CGL thickness 

Field-Dependent Mobility 

Organic polymeric photoconductors commonly in use today 
have been known to exhibit a field-dependent 
conductivity.5,6  Schein et al. empirically verified that the 
mobility in a molecularly doped polymer varies 
exponentially with the square root of electric field,5 from 
which we obtain 
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where we used the same curve fit coefficients µ0 and a that 
Schein et al. obtained (see Figure 10). Note that we 
assumed an isotropic material with respect to the field 
dependence of mobility. That is, carrier movement is 
independent of spatial directions. For non-isotropic 
materials, the mobility tensor can be modified accordingly 
to yield a non-diagonal matrix in a straightforward manner. 
 Figure 11 shows the surface charge density of a single 
pixel wide line using (9) and two constant mobility values 
(1.0×10-6 and 3.18×10-6 cm2/Vs). 3.18×10-6 cm2/Vs was 
obtained from 

( ) )/(1018.3)/(exp 26
0 VscmdVa dark

−×=+ lµ , (10) 

When the field dependent mobility is used, the amount 
of line blurring is negligibly small. Qualitatively speaking, 
this can be thought of as an amplification of the field effect; 
if the lateral carrier movement is only a fraction of the 
vertical transport distance, the field dependent mobility 
enhances the effect of relatively small horizontal field. Note 
that the charge density plots using the two fixed mobilities 
are almost identical. Thus when a constant mobility is used, 
its value does not affect the resulting line broadening. The 
charge decay, on the other hand, is very much dependent on 
the mobility value, as illustrated in Figure 12. Figure 13 
shows the charge distribution in the CTL when the mobility 
is set to 3.18×10-6 cm2/Vs after 1 ms of the initial carrier 
injection into the CTL, and Figure 14 shows the carriers at 
the same time when the field dependent mobility is used. 
Note that the carriers are more spread out with less overall 
intensity in the latter case. This effectively reduces the 
repulsion forces among the carriers, which in turn results in 
less line broadening. 
 Figure 15 shows the resulting surface charge density 
when the CTL thickness is 40 µm. Line broadening from 
the field dependent mobility is still less than 1 µm. Thus it 
can be concluded that line blurring arising from charge 
transport phenomena is negligibly small in isotropic 
materials. 
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Figure 10.Field dependent mobility5 

 

Figure 11. Surface charge densoity using the field dependent 
mobility (d = 20 µm) 

 

Figure 12. Total charge decay (d = 20 µm) 

 

Figure 13. Carrier movement in the CTL using the constant 
mobility 3.18×10-6 cm2/Vs (d = 20 µm) 

 

Figure 14. Carrier movement in the CTL using the field dependent 
mobility (d = 20 µm) 

 

Figure 15. Surface charge density using the field dependent 
mobility (d = 40 µm) 
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