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Abstract 

Electrophotographic printers using light emitting diode 
(LED) imagers may print images with streaks due to 
nonuniformity in the light output intensity and spot shape. 
Typically, each LED intensity is measured and the current 
adjusted to maintain uniform light output. However, the 
spot profile from emitter to emitter is different because of 
the imaging optics and emitter structure variations. The 
response of the print engine to spot structure can cause a 
printer to have streaks even though the intensity profile is 
uniform. We describe a technique that monitors the print 
uniformity to adjust the LED elements. The test pattern 
consists of an arrangement of single pixel wide lines 
arranged in a way that minimizes the sensitivity to printer 
and measurement noise. Control theory methodology is 
used to adjust the LED exposures to achieve a uniform 
profile of line widths and thus full print uniformity. This 
approach can be used to compensate for other system 
sources of print nonuniformity. 

Introduction 

It is difficult to achieve a uniform density output from a 
printer. The problem is particularly severe for high quality 
color printers, where subtle changes in shading and uniform 
fields are perceptible. For example, a 1 mm periodic 
variation in the optical density with a peak to peak 
amplitude of only 0.25∆L can be perceived.1 This is a 
variation of only about 0.3%. 
 An LED imager has advantages of speed, resolution 
and compactness, but can have a nonuniform response 
which manifests itself as streaking. Adjustments following 
the manufacture of the LED print bar to make the intensity 
profile uniform may no longer give a uniform profile when 
the LED is incorporated into a printing system. The beam 
shape may differ from LED to LED within a print bar 
because of the differences in the optical path. The beam 
shape change may give rise to a nonuniform printer output. 
Other subsystems in the printer may also be a source of 
streaks which could potentially be compensated for by the 
LED printbar. 
 Using a printed test pattern to monitor uniformity is a 
more direct probe. The uniformity can be quantified at the 
print and the LEDs can be adjusted to give a uniform print. 

In ref. 2, scanned flat field contones are used to adjust 
individual LED on times. In ref. 3, scans of different density 
strips are used to determine the amount to shift the input 
gray levels to compensate for the LED nonuniformity. 
 In this paper, we describe an improved technique to 
maintain uniform prints. Our technique differs in 3 respects 
from the previous techniques. First, we use a test pattern 
that allows individual LED outputs to be measured with 
high sensitivity. Second, we use a control methodology 
which makes our measurements less sensitive to noise. 
Third, we generalize our technique so that it still functions 
for 1200 spi or higher imagers. 

Scanner-based Compensation 

Previous compensation techniques scan uniform halftones. 
A constraint of scanning halftones is that LEDs cannot be 
adjusted on an individual basis. Averaging must be 
performed over some amount of the halftone cell to 
eliminate the structure introduced by the halftone. 
 Individual LED intensities can be monitored with a test 
pattern sensitive to single LEDs.4 A portion of the test 
pattern we use is shown in figure 1. The darkness of the line 
is proportional to the intensity output of the LED. 
 

  
Figure 1. Section of test pattern. Bar on the left is for alignment. 

 
 The uniformity achievable with a scanner-based 
technique depends on how precisely each line can be 
measured. Figure 2(a) shows an magnified view of one of 
the lines of figure 1. It was scanned on a UMAX Powerlook 
III flatbed scanner at 1200 spi, the true optical resolution. 
Figure 2(b) shows a cross section through this line. To 
extract line width we define a threshold and determine the 
spacing between the crossing points with linear 
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interpolation.5 Using this gray level information increases 
the resolution beyond the scanner resolution. 
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Figure 2. Image of line and cross section. Possible metrics are line 
width w, minimum response at line center rmin, and area under 
curve a. 

 
We estimated the measurement precision by scanning a 

print with many single pixel lines multiple times. The print 
was moved on scanner platen each time. The standard 
deviation of each line width measurement was found. The 
average of these standard deviations could be made as low 
as 0.47 µm by adjusting the threshold. 

In order to measure all the LEDs on a single print, 
multiple LEDs must be turned on. The single pixel lines 
must be separated by enough space in a single print so the 
presence of one line doesn't affect the measurement of 
another line. We found that a separation of at least 7 pixels 
at 600 spi is sufficient. 

An additional technique to increase the sensitivity is to 
print multiple repeats of the single pixel line on the page. 
The LED response is found by averaging these multiple 
measurements together. 

To monitor the full set of LEDs on a print bar requires 
writing multiple rows of single pixel wide lines. Each row 
prints out a different set of LEDs. One approach is to 
stagger the set of LEDs printed, for example, printing LEDs 
1,9,17,… in the first row, LEDs 2,10,18,… in the second 
row, and so on. However, this staggering is not robust 
against averaging to compensate process direction banding. 
A better technique is to randomize the LEDs in each test 
pattern row. We pick a random set of LEDs to print in each 
row, with the constraint that the lines can't be too close to 
each other. This approach ensures that all rows are coupled 
to all other rows. 

The line profile can be processed to a single number 
that correlates with the intensity of the LED. The objective 
of this processing is not to give a physically meaningful 
metric, but to get a metric of the highest precision that 
correlates with the LED intensity. The interpolated line 
width is one choice, but the threshold crossing can be 
chosen arbitrarily to increase the sensitivity. The integrated 
area under the line is another choice. A third choice may be 
the interpolated minimum reflectance at the center of the 
line. All of these metrics are illustrated in figure 2. 

We have written an image analysis algorithm that takes 
as input the scanned test pattern and returns a metric 
corresponding to the exposure of the individual LEDs. 
Using a key of the ordering of the test pattern lines, the 
algorithm automatically performs the ordering and the 
averaging of the multiple line repeats. It is robust against 
print defects that might typically appear in a print. It is also 
robust against process direction banding by forcing the 
average of each row of test pattern lines to be equal. 

Control Algorithm 

We use a control methodology to ensure a precise 
measurement in the presence of measurement and printer 
noise. A flowchart is shown in figure 3. The line width wi

k 
of LED i is given by 

k
ii

k
ii

k
i vhugw ++=  

where ui
k is the LED exposure setpoint, gi

k is the sensitivity, 
hi

k is an offset, vi
k is the measurement noise, and k is the 

iteration. We measure the sensitivity by setting half of the 
LED's high and half of them low and generating a print. The 
high and low LED's are switched and another print is 
generating. The average line width of one print is offset and 
forced to match the other to compensate for printer tone 
reproduction curve (TRC) drift. The sensitivity is 
proportional to the line width difference between each line 
in the two prints. 
 

Calculate LED
sensitivities

Set LED exposures
equal

Print & scan
test pattern

Process scan
for line width

Calculate
difference between

measured and
averaged width

Change LED
setpoints by
fraction f of
difference

Good
uniformity

?

Done

yes

no

   
Figure 3. Flowchart of compensation procedure 

 
 
 The next step is to set all the LED exposures equal at 
halfway between the minimum and maximum set point. 
Doing this helps ensure that the set points will not clip if a 
large change is required to balance the LED's. In the third 
step, the test pattern is printed and scanned. In the fourth 
step, we process the image to extract the line width 
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corresponding to each LED. We computer the correction 
setpoints using an integral control law 

 
where <wk> is the average line width at iteration k and g0 is 
the average sensitivity of all LEDs. Controlling to the 
average line width for a particular page ensures that this 
LED balancing algorithm is independent of drift in the 
TRC. 
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Figure 4. Line width uniformity 

 
The stability and accuracy of the control loop is 

achieved by the best choice of f. The control loop is stable if 
0<f<2g0/gmax. The performance of the optimization is 
gauged by the speed of the response and the sensitivity to 
the measurement noise. 

If vi=0, then the closed loop response ∆uk to an initial 
condition ∆u0 is given by ∆ui

k=(1-fgi/g0)k∆u0. So, provided 
that |1-fgi/g0|<1, the number of iterations k2% needed to 
achieve |∆ui

k/∆ui
0|<0.02 is k2%=log(0.02)/log(|1-fgi/g0|). 

Therefore, the speed of response is determined by |1-fgi/g0|, 
the smaller this value the faster the response. 

Assuming a stable closed-loop and a random zero-mean 
measurement noise with standard deviation σv, the standard 
deviation of the line width σw is given by σw=NGσv, where 
NG is the noise gain (specifically, the H2 norm of the 
discrete-time closed-loop map from vi to ∆wi) and is 
computed as NG = 1/(1 – (fgi/go)/2)0.5. The standard 
deviation of the actual linewidth ∆wi

true is thus given by 
σw

true = ((NG
2-1)0.5)σv. 

Experimental Results 

Figure 4 shows the improvement in line width for a scanner-
based uniformity operation. The sensitivity of line width to 
exposure setting was gi=0.96 µm. We ran the normalization 
for 6 iterations with a gain factor f=0.5. 

 The uniformity improvement can be seen more clearly 
by plotting the standard deviation of all the measured line 
widths as a function of iteration as shown in figure 5. The 
initial standard deviation is above 5 µm. The measurement 
noise for our choice of threshold, exposure, and repeat of 
the line widths is 1.06 µm. We find that after each iteration, 
the measured noise level becomes twice as close to the 1.06 
µm level as it previously was, as expected for a gain of 
f=0.5. Our choice to stop at the 6th iteration looks justified 
as the noise level has reached its lower limit. 

Figure 6 plots the Fourier transform of the line width s 
for the scanner-based optimization. Also shown in this 
figure is the Fourier transform of the line widths following a 
uniformity adjustment based on a direct measurement of the 
LED intensities. The direct intensity measurement contains 
two large peaks at 1.09 cycles/mm and 2.18 cycles/mm. 
This is the frequency and the harmonic of the focusing lens 
repeat distance. These two peaks are completely absent in 
the scanner based normalization. 
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Figure 5. Decrease of noise metric 
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Figure 6. Frequency spectrum of line width uniformity. Thin line 
before, thick line after. 

 
The low frequency (<0.5 cycles/mm) noise, presumably 

due to the other xerographic subsystems, is also lower for 
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the scanner-based normalization. The scanner-based 
normalization doesn’t differentiate between noise coming 
from the LED and noise coming from the xerography. It 
will adjust LED intensities to eliminate both. 

Higher Resolution Imagers 

1200 spi and higher LED imagers have been developed for 
higher image quality. The higher resolution imagers give 
more flexibility for halftone design, but single pixel lines 
may not print out. The scanner-based uniformity technique 
as described above would not work. 

However, this technique can be modified. Instead of 
printing single pixel wide lines, double pixel wide lines can 
be printed. However, this alone is not enough to balance the 
LED. If double pixel wide lines only are printed, there is an 
odd/even instability. Making all the odd LEDs bright and all 
the even LED's dim would give double pixel lines of all the 
same width, yet would lead to a distorted image.  

Adding triple pixel wide lines to the test pattern solves 
the instability problem. One approach is to group the LEDs 
by three. Let us label them A,B, and C. The test pattern 
would then consist of 3 combinations: AB, BC, and ABC. 
The presence of the ABC combination in the test pattern 
breaks the instability. If there was an alternating bright/dim 
pattern, some of the ABC combinations would have 2 dims 
and a bright, and others would have two brights and a dim, 
leading to different line widths. 

The printed double pixel line width will be a function 
of exposure. For small changes about the desired uniform 
exposure, the line width change should be linear with an 
exposure increase. The sensitivity coefficient should be the 
same for the left pixel and the right pixel because of 
symmetry. Therefore, we write the change ∆wi,i+1 in the 
double pixel line width as ∆wi,i+1=s2(∆ei+∆ei+1), where ∆ei is 
the exposure change of LED i and s2 is the sensitivity. 

The triple pixel line width is also linear for small 
changes in exposure. However, the sensitivity is different 
for changes in the middle pixel compared to changes in the 
edge pixel. We therefore write ∆wi-1,i+1=s3∆ei-1+sm∆ei+ 
s3∆ei+1. 

These two equations lead to a set of linear equations 
that can be combined into a matrix equation 
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We simulated the compensation algorithm using a 

typical set of parameters. The open circles in figure 7 show 
the relative exposure for 100 LEDs on a 1200 spi imager 
that has a uncorrected standard deviation in the exposure 
profile of 10%. We simulated the standard deviation of the 

line width measurement error to be 2 µm, f=0.25, and 
sensitivities of s2=36, s3=30, and sm=10 µm. The exposure 
uniformity achieved after the line widths uniformity reached 
the measurement error is shown by the solid circles in figure 
7. 
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Figure 7. Improvement in exposure uniformity using double and 
triple wide lines as a measure. Open circles - before correction, 
closed circles - after correction 

Conclusion 

Monitoring the uniformity of the final print gives a direct 
way to calibrate an LED print bar. Artifacts arising from the 
imager, such as variations in the spot shape due to the 
optics, are compensated for. In this paper, we present 
techniques that increase the quality of the compensation 
with respect to noise. A precise measurement of the LED 
intensity can be measured with a test pattern with multiple 
repeats over single pixel wide lines. We described a control 
methodology that will give a good compensation in the 
presence of measurement noise. For higher resolution 
images, where single pixel lines do not print, simulations 
show that it is possible to make achieve uniformity by 
printing multiple pixel wide lines. 
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