
 

Printhead Maintenance – Low Pressure Assist 
Improvement on Effectiveness 

Rodney B. Hill 
Xerox Corporation 
Wilsonville, Oregon 

 
 

Abstract 

Printheads of all types have historically had a difficult time 
keeping contamination from entering their apertures during 
the printhead maintanence cycle. This is due to a negative 
pressure at the aperture that must be maintained for jetting 
performance. The current study examined this problem 
analytically and experimentally. It has demonstrated that 
maintaining a low pressure during the entire printhead 
maintenance cycle almost completely eliminates this 
problem. Results are applicable to most ink-based printing 
technologies, and will improve print quality and reliability. 

Introduction 

Contamination in jet orifices is a significant print quality 
and reliability issue for inkjet printers. This contamination 
comes in the form of external particles (typically paper 
fiber) or ink from an adjacent jet. Both of these sources are 
exacerbated by printhead maintenance, where some type of 
purge / wipe sequence is typically used. 

Contamination problems during the printhead 
maintenance cycle arise from the slightly negative pressure 
at the jet orifice. Both bubble jet and piezo-driven solid ink 
printers utilize this negative pressure to force the meniscus 
to a consistent shape, which improves jetting robustness. 
This negative pressure has a detrimental effect during the 
printhead maintenance cycle. In particular, immediately 
after a purge, ink and particles that are left on the faceplate 
are readily drawn into the jets creating print quality and 
reliability problems. This occurs because the orifices are 
now “flooded”, greatly reducing surface tension forces. 

These effects can be greatly reduced with the 
application of a low pressure to the system; just enough to 
bring the orifice to atmospheric pressure. For this condition, 
the flow of contaminants into the jet orifice is examined 
analytically, and compared to experimental results from a 
solid ink printhead. From this, it is possible to determine a 
range of acceptable pressures for a given printhead 
configuration. 

Meniscus Characteristics and Control 

Repeatable meniscus characteristics are always important 
for jetting performance of an ink jet printhead. Applying the 

appropriate pressure force to the nozzle can achieve these 
goals. 

A range of meniscus shapes and positions are shown in 
Figure 1 for a simple cylindrical aperture. 
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Figure 1. Aperture cross section showing possible meniscus 
shapes and locations 

 
If no pressure is applied, the possibility exists to have a 

meniscus shaped like that depicted by curves B or C, 
located anywhere within the bore of the aperture. This case 
is problematic because both the curvature and location are 
highly sensitive to small changes in pressure. If a small 
positive pressure is applied to the ink side of the aperture 
plate, a meniscus as depicted by curve D results. While this 
scenario is relatively insensitive to pressure changes, it is 
highly sensitive to external contamination or intentional 
perturbations such as a wiper blade (to be discussed). If a 
slight vacuum is applied to the ink side of the aperture plate, 
a meniscus as depicted by curve A results. As with the 
positive pressure, this condition is insensitive to small 
changes in pressure. This condition is also insensitive to 
external contamination, and is not affected by wiper blade 
motion. In summary, a slight negative pressure leads the 
most stable meniscus condition for jetting. 

The two most common methods of supplying a precise 
negative pressure to the jet apertures include a simple free 
surface height difference and capillary action of a porous 
media (Figures 2). 
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Figure 2a. Pressure force via height difference   
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Figure 2b. Pressure force via surface tension 

 
Xerox Corporation’s Phaser solid ink printers provide 

an example of a simple free surface height difference which 
yields a pressure at the orifice of: 

hgP ∆−=∆ ρ      (1) 

where ρ is the ink density, g is gravity, and ∆h is the 
difference in height between the reservoir free surface and 
the aperture (Figure 2a). 

Epson (and many other manufactures) bubble jet 
printers provide an example of utilizing capillary action to 
supply the pressure at the apertures. In this case, the pore 
size of the media determines the negative pressure at the 
aperture and is given by: 

hg
D

P
p

∆+−=∆ ρ
θγ cos4

    (2) 

where γ is the surface tension of the ink, θ is its contact 
angle with the aperture, and Dp is the pore size of the media. 

No technical reasons exist to limit either of the 
preceding examples to their current (or alternate) form of 
pressure generation. Either, in fact, could readily use the 
methodology of the other. Firing direction, however, 
generally makes one more appealing than the other. 

Maintenance Cycle 

Periodic maintenance is essential to maintain printhead 
performance for all types of ink-based printers. Bubble jets 
are highly susceptible to external contamination (typically 
paper fibers) and ink drying (in apertures) issues. Solid ink 

printers, while less susceptible to these problems, suffer 
from air coming out of solution as the ink in the printhead 
freezes during extended periods of nonuse. Both 
technologies typically remedy these issues by a maintenance 
cycle which includes ejecting ink from the apertures, 
followed by removing the residual ink from the face of the 
jetting array. 

The maintenance cycle disturbs the stable meniscus 
discussed in the previous section. In particular, after ink is 
ejected from the apertures, residual ink on the face of the 
jetting array “floods” the apertures, rendering the 
withholding force of the meniscus useless (Figure 3). 

 
Figure 3. Depiction of ink mixing in a printhead during a 
maintenance cycle 

 
Ink mixing during the maintenance cycle is a result of 

ink from a top color running over the apertures of the colors 
below. The external ink, depicted as black in the sketch of 
Figure 3, enters the aperture via advection and diffusion. 
The ink dye is a passive scalar, thus the scalar transport 
equation is applicable: 
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where S is the passive scalar (ink dye), D is the coefficient 
of scalar diffusion, and r, θ, z is the cylindrical coordinate 
system. 

For simplicity, only the height difference case of the 
previous section is considered. The velocity field is driven 
by a pressure gradient across the aperture, maintained by the 
(approximately) 3/4” height difference between the 
apertures and the free surface in the reservoir. The reason 
for this difference is to bias the meniscus for jetting stability 
as discussed previously. Under all conditions other than 
purge, the jetstack faceplate is clean, and the surface tension 
of the ink at the aperture can easily maintain equilibrium. 
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During purge, however, the aperture is submerged (Figure 
3), making surface tension forces insignificant. In this case, 
the velocity field, Vi, can be solved apriori, and is the exact 
solution to the Navier-Stokes equation for circular pipe flow 
given in Equation 4. 
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Utilizing Equation 4, and assuming that the scalar field 

is independent of θ, Equation 3 reduces to: 
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where the first term on the right hand side is scalar 
advection (dye being carried by the bulk flow), and the 
second term is scalar diffusion. 

Empirical data (to be discussed in the following 
section) suggest that the ink mixing is dominated by the 
pressure gradient driven advection term of Equation 5. If a 
pressure gradient is applied to counteract this term, the 
advection term is eliminated. It also results in the first 
diffusion term being eliminated, as the radial variation of 
the scalar field is due to radial variation of the velocity field, 
which is now eliminated. Hence, Equation 5 reduces to 
Equation 6, for the case of an appropriately applied 
pressure. 
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Thus, most ink mixing can be mitigated via applied 
pressure. A diffusion term, however, will always be present 
(barring infinitely fast wipe speed). Because of this, 
printheads typically must jet a small amount of ink prior to 
making customer prints. 

Maintenance Cycle Purge Profile 

To validate the analytical analysis of the previous section, 
extensive testing has been completed on Xerox solid ink 
printheads. In particular, the maintenance cycle purge 
profile has been optimized, and is compared with the 
analysis. 

For pressure profile measurement and optimization, a 
pressure transducer and oscilloscope were incorporated. A 
typical developmental purge profile is shown in Figure 4. 
Note that two identical profiles are shown on different 
scales for clarity. The high pressure purge profile, defined 
by the rise time, peak pressure, and fall time, are important 
for clearing existing contamination, but not for ink mixing 
and other external contamination, thus are not discussed 
here. 

The three important parameters for ink mixing include 
the delay time and p(low) as they drive advection, as well as 
the wipe time, as it is important for diffusion. Delay time 
and pressure have been examined and optimized 
experimentally. Measurement system modifications would 
be significant to quantify diffusion, thus measurements were 
not made. Suffice to say that diffusion is driven by wipe 
time, thus the wipe should be as fast as possible. 
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Figure 4. Purge profile 

 
The delay time between the high pressure purge (HPP) 

and the low pressure assist (LPA) is important due to the 
negative static pressure at the orifices. External ink will 
flow into the jets (given by the advection term of Equation 
5) at any time that the applied pressure falls below the static 
negative pressure, and ink is covering the orifice (Figure 3). 
Experiments were conducted to verify this analysis, the 
results of which are shown in Figure 5. The horizontal axis 
is simply the delay time, in seconds, depicted in Figure 4. 
The vertical axis is the average amount of ink, in grams, 
that must be jetted to eliminate all traces of ink mixing. As 
expected, the smaller the delay time, the less ink mixing is 
present. Obviously, from Figure 5, the delay time should be 
eliminated if possible. 

The required pressure of the LPA is bounded on both 
sides. If the pressure is too low, ink will flow into the 
orifices according to Equation 5. If the pressure is too high, 
ink begins to “ooze” out of the orifices, causing problems 
for the orifices below. Two solid ink printheads were tested 
to determine the best operating point for the LPA. The 
results are shown in Figure 6. 
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Figure 5. Delay time effect on ink mixing at 1.35” H2O 
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Figure 6. Effect of LPA pressure on ink mixing performance with 
no low pressure delay 

 

For both printheads of Figure 6, a bathtub curve exists, 
indicating exceptional ink mixing performance from 
approximately 1.1 to 1.5 inches of water (pressure). The 
lower limit is somewhat higher than the negative static 
pressure at the orifices. This is due to the slight pressure 
applied by the wiper blade as it cleans the jetstack. The 
upper limit corresponds to prior experiments indicating that 
the jets begin drooling at roughly 1.0 – 2.0 in H2O. These 
data also indicated no corellation to orifice diameter. This is 
significantly lower than the orifice meniscus strength, and is 
likely caused by contamination related surface wetting on 
the faceplate as mentioned previously.   

Conclusion 

The combination of negative static pressure at the apertures 
(needed for jet stability) and periodic aperture array 
maintenance leads to unwanted contamination (in the form 
of ink or debris) being drawn into the apertures during the 
maintenance cycle. Experimental results agree well with 
analytical work, suggesting methods to largely eliminate 
this problem leading to improved print quality and 
reliability. 
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