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Abstract 

An intermediate belt architecture and a transfix process are 
in use for liquid toner electrophotography systems. Here we 
describe the impact of transfix temperature and carrier 
content in the toned image layer on transfer efficiency and 
fix level. Temperature has to be high enough to melt the 
toner. Increasing carrier concentration lowers the toner 
melting point and increases image fix to paper. But high 
carrier concentration decreases the cohesive strength of the 
toner layer and causes incomplete transfer and toner 
penetration into uncoated paper.  

Introduction 

Liquid toner electrophotograpy (LTE) has many potential 
advantages over dry toner electrophotography, primarily 
deriving from the smaller particle size that a liquid carrier 
enables.1 There are other advantages of the liquid nature of 
LTE, e.g., blending of toners to form custom colors.2 LTE 
technology has gravitated to a printing process that initially 
develops an image on a photoreceptor, transfers the image 
to an intermediate member, and then transfers and fixes the 
image to the final substrate in a single step (transfix). While 
this adds complexity to the system it has several advantages, 
for example: 
1) Minimizes liquid carrier in final substrate 
2) Reduces impact of substrate on electrostatic transfer 
3) Transfers image as a film 

 
It is interesting to note that the advantages of 

intermediate transfer for xerographic systems were patented 
by Chester Carlson over 40 years ago.3 

Example LTE Transfix Systems 

Examples of LTE transfix systems are shown in Figures 1 
and 2. In Figure 1 the HP/Indigo system,4 which has been 
commercialized and is serving the color digital production 
market, is displayed. This printing engine performs the 
following operations sequentially: 1) Electrostatic charging 
of the photoreceptor (designated PIP in Figure 1); 2) 
Exposure to form a latent image on the photoreceptor; 3) 
Inking the photoreceptor using a development roller in a 
process called BID (Binary Ink Development); 4) 
Electrostatic transfer of the image to the offset blanket; 5) 
Heating the image on the blanket which serves to reduce the 

hydrocarbon carrier level in the image and to partially melt 
the toner particles; 6) Transfixing of the heated ink image to 
the substrate. This process is repeated for each color, i.e., it 
is a multi-pass print process. In Figure 2 the Samsung 
system,5 which has been the subject of numerous patents 
since 1999, is displayed. In contrast to the HP/Indigo 
system the Samsung print process is single pass with the 
four color image developed on the photoreceptor and 
transferred in one step to a transfer roll and then transfixed 
to the final substrate. Another difference between the 
HP/Indigo and Samsung processes is that in the latter the 
transfer to the transfer roll is not electrostatic but is driven 
by the higher surface energy of the transfer roll relative to 
the surface energy of the photoreceptor. 
 

 

 

Figure 1. HP/Indigo LTE transfix system 

IS&T's NIP19: 2003 International Conference on Digital Printing Technologies

45



 

 

LTE Transfix Experiments 

We report the results of transfix latitude experiments carried 
out using a simple model system. (1) We prepared LTE 
dispersions6 in mixtures of Norpar 15 (low vapor pressure) 
and Isopar L (high vapor pressure). (2) We coated this 
mixture onto an intermediate transfer belt (ITB) at 
thicknesses equivalent to 0.2 mg/cm2 of toner solids. We 
then evaporated the Isopar at 70-80oC, leaving toner 
particles in Norpar carrier. (By varying the Isopar/Norpar 
ratio we could achieve different final ratios of carrier to 
toner while always having enough carrier for good initial 
dispersion of the toner particles.) (3) We heated the toner-
carrier layer on the ITB in an oven. (4) We transfixed the 
heated toner-carrier layer to the final (unheated) substrate 
using two unheated pressure rolls. The control variables are 
(a) the weight% Norpar after the Isopar is evaporated, (b) 
the transfix temperature. The output variables are 
completeness of transfer from the ITB to paper and the 
permanence or fix of the image to paper. 

 

 

Figure 2. Samsung LTE transfix system 

 
Preliminary tests showed that pressures of 100-500 psi 

provided good ITB-paper conformance for a range of 
papers and a range of ITBs from 2-4 mils thick and from 
40-70 ShoreA durometer. In the rest of this section we will 
describe transfix at 10 in/sec and 250 psi. The nip width 
between the rolls is 9.5 mm and the dwell time in the nip is 
37 msec. The ITB is 0.003” thick Viton®, a fluoroelastomer 
with a low surface energy that is often used as a surface 
coating for fuser rolls, to reduce toner adhesion to the fuser 
roll. Xerox Image Series LX paper is the final substrate. 

Experimental Results – The Latitude Space for Viton 
ITB  

There are many parallels between the requirements for 
good dry toner electrophotographic fusing and those for 
good LTE transfix. The LTE ITB, like the surface of the 
fuser roll, should be an elastomer and the transfix pressure, 
like the fusing pressure, should be high enough so that the 
elastomer conforms to the paper surface irregularities and 

all parts of the toned image layer contact the paper surface. 
The basic latitude space for transfix from Viton is shown in 
Figure 3. The operating window is from about 35-60 weight 
% carrier and temperatures greater than about 90oC. In the 
rest of this section we describe the basic processes 
occurring in transfix and the reasons for the process space 
boundaries. 
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Figure 3. Transfix latitude window 

Transfer Efficiency 
Transfer efficiency is controlled by the force balance at 

transfix nip exit. If the toner layer’s adhesion to the ITB is 
lower than the toner layer’s internal cohesion and is also 
lower than the toner layer’s adhesion to the paper, then 
transfer will be 100%. Otherwise, transfer will be 
incomplete. The incomplete transfer of images with more 
than about 60 wt% Norpar is caused by image layer 
splitting. High carrier content reduces image cohesion to a 
value less than toner adhesion to the ITB. As the paper 
separates from the ITB at the transfix nip exit, the liquid 
toner layer splits somewhere in the middle and a fraction of 
the layer remains adhered to the ITB. For example, for 
images containing 70% Norpar 15 we have observed 85% 
transfer for temperatures of 80-120oC. That is, 15% of the 
toner layer remains on the ITB. Figure 4 shows 
photomicrographs of toner images after transfix to paper. 
The increasing layer thickness from 7-40% Norpar is 
consistent with our picture of toner and carrier melting 
together to form a layer whose thickness increases as the 
carrier content increases. Melting of this layer is necessary 
for the layer to conform and adhere to the paper. But 60% 
Norpar causes the image layer viscosity to become so low 
that toner has migrated into the paper. 

Image Fix 
We measured fix by the change in reflective optical 

density after abrasion with an eraser. The definition is,  
Fix = OD(abraded) / OD(original)    (1) 

By measurements on offset lithographic images in a 
number of national publications, we have established a 
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requirement that fix be greater than 0.5 to be acceptable. 
Figure 5 shows that fix increases approximately linearly as 
Norpar in the image increases, even beyond the point where 
image transfer is incomplete (~60%). For temperature above 
about 90oC, there is little effect on fix.  

 

 

Figure 4. Micrographs of Toner After Transfix to Paper 
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Figure 5. (a) Fix vs. transfix temperature at 50% Norpar 15. 
(b) Fix vs. Wt% Norpar 15 at temperature =100oC.  

Conclusions 

For the model system that we have studied, we have found 
the following. 

Toner particles must melt in order to transfer 
completely to paper. 

Carrier suppresses the toner’s melting point and enables 
lower temperature fusing. When toner melts it takes up 
carrier, increasing the ultimate image layer thickness. More 
than about 60% carrier in the image layer reduces the 
layer’s viscosity to a point where image splitting occurs and 
results in incomplete transfer. Less than about 35% carrier 
weakens toner layer adhesion to paper and produces 
unacceptably low fix. Our system is only a model for 
transfix. In other systems the kinetics of heating, melting 
and carrier evaporation may be very different. This could 
lead to significantly different boundaries for the control 
variables. 
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