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Abstract  

The statistical distributions of toner adhesive force Fa and 
detach field Ed, arising from distributions in toner radius r 
and charge density q are examined mathematically. The 
widening of Fa distribution and the narrowing of Ed 
distribution, compared to r and/or q distributions, have been 
predicted. Since Ed is a quantity more relevant than Fa in 
electrophotography, this finding suggests that the effects of 
toner size and/or charge dispersions on toner adhesion in 
electrophotography may be weaker than generally expected.  

Introduction 

Adhesion of toner particles to a surface is a phenomenon 
important in many sub-processes of electrophotography, 
e.g., development, transfer and cleaning. Extensive studies 
over the last 30+ years have addressed various features of 
particle-surface adhesion.1 While much progress has been 
made, confusing experimental results have also been 
reported. This is often attributed to the size, shape and/or 
charge variations among the particles within a sample in 
practical applications. Investigations on samples with 
mono-dispersed spherical particles have been carried out to 
avoid this problem. However, understanding the nature of 
poly-dispersed samples is indispensable for advancement of 
the technology. In this work, we investigate the statistical 
consequences of toner size and charge dispersions on the 
adhesion and detachment processes.  
 Recently, an investigation of toner adhesion using a 
novel apparatus based on vibratory detachment of toners 
was reported by Hirayama et al.2 The toner size and charge 
dependences of the adhesive force were determined for 
samples with poly-dispersed size, shape and charge. The 
empirical relationship obtained is consistent with the 
expression derived by Rimai et al. from the theory of 
Johnson et al.1,3 Based on these works, the adhesive force, 
Fa, can be expressed as the sum of an electrostatic 
component Fes and a non-electrostatic component Fne as, 
 

 Fa(r, q) = Fes + Fne = 4π(Aesr
2q2 + Aner)           (1) 

 
where r is the toner radius, q is the area density of charge on 
toners, and Aes and Ane are two empirically determined 
constants.  

 In most electrophotographic sub-processes, toners are 
removed from a surface with an electrostatic force, i.e. the 
product of toner charge and the external field. Denoting the 
charge on a toner by Q = 4πr2q, the required detach field Ed 
is given by,  
 

 Ed(r, q) = Fa/Q = Aesq + Ane/rq       (2) 
 

For typical electrophotographic toners on polished 
titanium surface, the values found for the constants are,2 

 

 Aes ≈ 1.63x1011 Nm2/C2, Ane ≈ 6.34x10−4 N/m   (3) 
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Figure 1. Electrostatic Fes (solid) and non-electrostatic Fne 
(dashed) components of adhesive force Fa  vs. toner radius 
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Figure 2. Electrostatic Ees (dashed) and non-electrostatic Ene 
(solid) components of detach field Ed  vs. toner surface charge 
density 
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With these constant values, the size and charge density 
dependences of the two components, Fes and Fne are shown 
in Fig. 1 for r and q in the ranges of practical interest. It can 
be seen that at higher charge densities Fes is larger than Fne, 
while at lower charge densities the relation is reversed. The 
transition occurs at about q ≈ 40 µC/m2. Similar plot of the 
two components of the detach field Ed is shown in Fig. 2. As 
in the case of Fa (Fig.1), the dominance of non-electrostatic 
or electrostatic components changes at charge density value 
q ≈ 40 µC/m2. For a toner radius of 4 µm, this q value 
corresponds to a charge-to-mass ratio of Q/m ≈ 30 µC/g, 
which is in the range of typical Q/m values for toner 
samples in actual electrophotographic applications.  
 Because of the wide distributed values of radius r and 
charge density q in toner samples, the adhesive force Fa and 
the detach field Ed for individual toners, as related to r and q 
by Eqs.(1) and (2), respectively, can be expected to have 
widely distributed values. The objective of the present work 
is to investigate the statistical consequences of r and q 
distributions on the Fa and Ed distributions. 

Log-Normal Distributions 

It is well known that the toner size distribution can be 
described by a log-normal distribution. The charge density 
distribution is less well documented, but can also be 
assumed to be log-normal with little loss of generality.  

The probability distribution function (PDF) of a 
random variable x (e.g., r and q) with the log-normal 
distribution is given by,4,5  

 

p(x) = [1/√(2π)αx]exp{−[ln(x/ξ)/α]
2
/2}            (4) 

 
and the cumulative probability function (CPF) by, 
 

P(x) = ∫0

x p(x’)dx’ = {1 + erf[ln(x/ξ)/(√2)α]}/2     (5) 

 
where erf is the error function, and ξ = xmd is the median 
value, i.e., P(ξ) = 0.5. The relative standard deviation (RSD) 
δ, i.e., the ratio of standard deviation σ to the average xo, is 
related to the parameter α by, 
 

RSD: δ = σ/xo = [exp(α2) – 1]1/2        (6) 

 
where σ = [<x2> – xo

2]1/2, with <x2> denoting the average of 
x2.     

Another measure of the width of distribution, the 
geometric standard deviation (GSD) is defined in terms of 
two x values, x1 = ξexp(−α) and x2 = ξexp(α), with P(x1) = 
0.16 and P(x2) = 0.84 as, 

 

GSD = ξ/x1 = x2/ξ = (x2/x1)
1/2 = exp(α)               (7) 

 
In other words, GSD represents the half width, in 

logarithmic scale, of the central 68% of the distribution. 

Adhesive Force and Detach Field Distributions 

The experimental data on the distribution of adhesive forces 
Fa reported by Hirayama et al.6 can be replotted as a CPF vs. 
Fa shown as solid curve with data points in Fig. 3. From the 
Fa value corresponding to the CPF value P = 0.5, the median 
adhesion is found to be Fm = 0.8x10−7 N. Similarly, from 
P(F1) = 0.16 and P(F2) = 0.84, we find F1 = 0.36x10−7 N and 
F2 = 1.32x10−7 N, yielding the GSD of Fa as GSD(Fa) = 
(F2/F1)

1/2 = 1.91, or α = 0.65 from Eq.(7). The dashed curve 
in Fig. 3 is the CPF of a log-normal distribution, Eq.(5), 
calculated with these median Fm and α (or GSD) values. It 
can be seen that the measured Fa distribution is 
approximately log-normal.  
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Figure 3. CPF of adhesive force from ref. 6 (solid-data), and the 
fitted log-normal CPF (dashed)  

 
In the following, we shall examine the nature of 

adhesive force and detach field distributions, derived from 
the toner radius r and the charge density q distributions, 
based on the functional relationship, Eqs.(1) and (2), 
suggested experimentally and theoretically.1,2 

The average value <Y(r, q)> of a function Y of r and q, 
both of which have log-normal distributions, can be 
calculated by,  

 

<Y(r, q)> = ∫0
∞ [∫0

∞Y(r, q)p(r)dr]p(q)dq             (8) 

 
where p(r) and p(q) are the log-normal PDF, Eq.(4), for r 
and q respectively. The integral can easily be evaluated by 
using the formula for the average <xn> of n-th power of x, 
xn, (x = r or q), given by,  
 

 <xn> = ∫0
∞ xnp(x)dx = xo

ngx

n(n−1)/2   (9) 

 
with gx defined in terms of the RSD of x distribution δx as gx 
= 1+ δx

2. Applying this general formula to the non-
electrostatic and electrostatic components of Fa and Ed, we 
have from Eqs.(1) and (2), 
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  <Fne> = 4πAne<r> = 4πAnero     (10a) 

   <Fes> = 4πAes<r2><q2> = 4πAesro

2qo

2grgq   (10b) 

 

   <Ene> = Ane<r−1><q−1> = (Ane/roqo)grgq    (11a) 

  <Ees> = Aes<q> = Aesqo    (11b) 

 
It can be seen that while the average value of Fne 

depends on the average ro only, the average value of Fes is a 
function of, not only the averages but also the widths of the 
r and q distributions. Consequently, it has a larger value 
than that calculated at the averages ro and qo. For Ed, this 
situation is reversed, namely, the average <Ene> is 
dependent on the widths of r and q distributions, but the 
average <Ees> is not, as seen from Eqs.(11a,b). Such a 
unique dependency on the distribution widths (g or δ) 
should be taken into consideration when comparing the 
relative sizes of the non-electrostatic and the electrostatic 
components. 

In the special case that only the radius has distributed 
values, but the charge density has a definite value q, the Fa 
and Ed distributions can be evaluated from the log-normal 
PDF (or CPF) of r distribution. Figure 4 shows a set of 
PDF’s with the median rm = 4 µm, the RSD δr = 0.8 and a 
fixed q = 40µC/m2. The PDF(r) curve is a plot of p(r), 
calculated from Eq.(4), against the r values. The PDF(Fa) 
and PDF(Ed) curves are obtained by plotting the p(r) values 
against the Fa(r) and Ed(r) values calculated from Eqs. (1) 
and (2), respectively. Similar procedures using the CPF 
P(r), Eq.(5), instead of p(r), yields the CPF(r), CPF(Fa) and 
CPF(Ed) shown in Fig. 5.  
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Figure 4. PDF of adhesive force Fa and detach field Ed, due to a 
given radius distribution PDF(r) 

 
An important feature seen from the curves in Figs. 4 

and 5 is the widening of the Fa distribution and the 
narrowing of Ed distribution compared to the r distribution. 
This indicates that the effect of toner size dispersion on Ed, a 
quantity more important than Fa in electrophotography, is 
much weaker than the same effect on Fa, a quantity often 
measured in adhesion experiments. In the following, we 

shall show that this feature is generally expected even with 
distributed charge density q. 
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Figure 5. CPF of adhesive force Fa and detach field Ed, due to a 
given radius distribution CPF(r) 

 
 The RSD of Fa can be calculated from the averages of 
Fa and Fa

2 as, 
 

 RSD(Fa) = [<Fa

2> − <Fa>
2]1/2 /<Fa> 

    = [Ane

2(gr – 1) +2AneAesroqogrgq(gr

2 – 1)  

   + Aes

2ro

2qo

4gr

2gq

2(gr

4gq

4 – 1)]1/2/(Ane + Aesroqo

2grgq)           (12) 

 
Similarly, the RSD of Ed is given by,  
 

 RSD(Ed) = [<Ed

2> − <Ed>
2] /<Ed> 

  = [(Ane

2/qo

2ro

2)gr

2gq

2(grgq − 1) + 2(AneAesgr/ro)(1−gq) 

   + Aes

2qo

2(gq – 1)]1/2/[(Ane/roqo)grgq + Aesqo]                  (13) 

 
With no q dispersion, i.e. gq = 1 and gr = 1 + δr

2, Eqs. (12) 
and (13) reduce to,  
 

 RSD(Fa) = δr{1 + [2AneAesroqo

2gr2 + 

   Aes

2qo

4ro

2gr

2(gr

3+gr

2+gr)]/(Ane +Aesroqo

2gr)
2}1/2  

   > δr = RSD(r)      (12a) 

 

 RSD(Ed) = δr/(1 + Aesqo

2ro/Aneg
r) < δr = RSD(r)   (13a) 

 

Equations (12a) and (13a) are the analytical 
representations of the features shown in Figs. 4 and 5, 
namely, the widths of Fa and Ed distributions are wider and 
narrower, respectively, than that of the r distribution. 

In the general case including the q distribution, 
RSD(Fa) and RSD(Ed) are numerically calculated from Eqs. 
(12) and (13), respectively. Some examples with the Ane and 
Aes values of Eq. (3) are shown in Fig. 6. In all cases, it can 
be seen that the following relationship, (Eqs. 14a, b) holds 
well for the parameter values in the range of practical 
interest. 
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Figure 6. RSD(Fa) and RSD(Ed) from Eqs. (12 and 13), as 
functions of RSD(r), or RSD(q). 

  
 RSD(Fa) >> RSD(r) > RSD(Ed)  (14a) 

 RSD(Fa) >> RSD(q) >≈ RSD(Ed)  (14b) 

 
 Alternatively, the distributions of Fa and Ed can be 
studied by numerical (Monte-Carlo) simulation as follows. 
A random number generator is used to generate a large 
number N of r values that have a log-normal distribution 
with a median rm and a GSD(r). Another log-normal random 
number generator is used to generate the same large number 
N of q values with a median qm and a GSD(q). The adhesive 
force Fa and the detach field Ed are calculated with each set 
of r and q values (ri, qi) according to Eqs. (1) and (2), Fai = 
Fa(ri, qi), Edi = Ed(ri,qi). Then, the CPF, P(X), where X = Fa or 
Ed, is determined from the number of occurrences of Fa (or 
Ed) in the range between 0 and X, normalized to the total 
number N. The PDF, p(X), can be obtained by 
differentiating P(X) with respect to X. The Fa (or Ed) values 
corresponding to P(X) = 0.16, 0.5, and 0.84, (i.e. X1, Xm, X2) 
can be interpolated from P(X), for the determination of the 
widths of distributions.  

Examples of the Fa and Ed distributions generated with 
the above procedure (with N= 500,000) are shown in Figs. 7 
and 8, respectively, for the case of rm = 4µm and qm = 40 
µC/m2, GSD(r) = 2.0 and the GSD(q) = 1.25, and the Aes 
and Ane values of Eq.(3). It can be seen that the distributions 
are very close to log-normal. A significant difference in the 
widths of the Fa and Ed distributions can be seen. The 
median values are found at: Fm = 0.85x10−7 N and Em = 
1.09x107 V/m. The X1 and X2 values are found to be not 
exactly symmetric with respect to Xm. However, 
generalizing the definition of GSD, we have,  

 

GSD(Fa) = (F2/F1)
1/2 = (2.89/0.29)1/2 = 3.17  (19) 

 

GSD(Ed) = (E2/E1)
1/2 = (1.48/0.86)1/2 = 1.31  (20)  

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.01 0.1 1 10 100

P
ro

b
ab

ili
ty

     GSD      m e d 
r:   2 .00      4  µ m        
q :  1 .25     40µ C /m 2    

0.84

0.16

0.50

 

     Adhs. Force (10-7 N) 

Figure 7. CPF (solid) and PDF (dashed) of adhesive force Fa , 
generated by Monte-Carlo simulation 
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Figure 8. CPF (solid) and PDF (dashed) of detach field Ed , 
generated by Monte-Carlo simulation 

 
With respect to the input GSD(r) = 2.0 and GSD(q) = 

1.25, these GSD(Fa) and GSD(Ed) values satisfy the 
relations, Eq.(14), with RSD replaced by GSD. Such 
simulations have been repeated with various combinations 
of radius and charge density distributions as inputs. In all 
cases of practical interest, the relations Eq.(14) with RSD 
(or GSD) are confirmed. 

Summary and Conclusions 

In most studies of particle adhesion, the adhesive forces Fa 
are measured by direct comparison with mechanical forces 
(e.g. centrifugal or vibrational). In contrast, in 
electrophotography, the size of electrostatic (detach) field Ed 
required to remove toners from a surface is more relevant. 
The statistical analyses presented above show that the 
dispersion in Fa and Ed are generally much larger and 
smaller, respectively, than the dispersions in toner radius 
and charge density. This indicates that the dispersion, 
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fluctuation, or non-uniformity in the required detach field 
due to toner radius and charge dispersions is actually 
smaller than expected from measurements of mechanical 
adhesion forces.  
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