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Introduction 

Microelectronics has been spectacularly successful at 
providing increasingly complex digital processing and 
memory, but thus far less successful at providing simple 
functions at very low cost. Thin film electronics offers an 
attractive alternative to conventional Ics for low-cost or 
large-area applications because device materials can be 
deposited and processed at low temperature and low cost. 
Amorphous silicon thin film transistors (a-Si:H TFTs) 
fabricated on glass substrates are widely used for active 
matrix displays, but a-Si:H TFTs can also be fabricated on 
flexible polymeric substrates with potential advantages in 
manufacturing cost and device applications. Organic thin 
film transistors (OTFTs) can be fabricated at much lower 
temperatures than a-Si:H devices and OTFT device 
performance now rivals or exceeds that of amorphous 
silicon devices. Low OTFT processing temperatures allow 
fabrication on a range of surfaces including cloth, paper, or 
polymeric substrates. Potential applications for organic 
TFTs include pixel access devices in active matrix displays, 
and low cost electronics for smart cards or merchandise 
tags.1-4 

OTFTs have been demonstrated using a variety of 
organic semiconductors, including both polymers and small 
molecule materials. OTFTs fabricated on rigid substrates 
using pentacene as the active layer material have shown the 
best performance5-6 with carrier field-effect mobility greater 
than 3 cm2/V-s, subthreshold slope less than 0.4 V / decade, 
near-zero threshold voltage, and on/off current ratio larger 
than 108. These characteristics are similar to or better than 
those typically obtained for a-Si:H TFTs and are sufficient 
for a range of low-cost or large-area electronics 
applications. 

Flexible Substrate Devices 

We have fabricated OTFTs using pentacene as the active 
layer material on polyethylene naphthalate (PEN) substrates 
with performance similar to that obtained on silicon or glass 
substrates. Best measured mobility is greater than 2 cm2/V-s 
with typical mobility near 1 cm2/V-s and mobility 
uniformity near 5% (1 σ) over a 1 cm2 area. Fig. 1 shows a 
PEN substrate with pentacene OTFT devices and both 
digital and analog circuits. The substrate also includes some 
simple polymer dispersed liquid crystal (PDLC) displays 

(the PDLC material is the milky material in the figure). 
Although the test displays were quite small (16 x 16 pixels) 
the displays were driven with standard ¼ VGA video timing 
signals (roughly what might be needed for a video capable 
PDA or cell phone) and demonstrated that OTFTs have the 
performance required for practical applications.7 
 

 

Figure 1. PEN OTFT substrate with devices, circuits and PDLC 
test displays. 

 
a-Si:H TFT fabrication currently requires higher 

temperatures than OTFTs. It is possible to deposit high-
quality a-Si:H at temperatures as low as 130oC or possibly 
even lower,8 but the silicon nitride gate dielectric most often 
used for a-Si:H TFTs typically requires higher temperatures 
(usually >200oC) to obtain good characteristics. Figure 2 
shows a-Si:H TFT devices and circuits fabricated on high-
temperature polyimide substrates. A maximum process 
temperature of 250oC was used and the devices have 
characteristics similar to those fabricated on glass 
substrates. 

Because a-Si:H TFTs are usually n-channel devices and 
most OTFTs are p-channel, organic and inorganic devices 
can be combined as a simple route to complementary 
circuits.9 It is also relatively simple to combine TFTs of 
either or both types with polymer based 
microelectromechanical system processing or other 
processing to build complex light-weight or flexible 
devices. Figure 3 shows a gas microwell detector built using 

IS&T's NIP18: 2002 International Conference on Digital Printing Technologies

397



 

 

a-Si:H TFTs fabricated on a Kapton® substrate with a thick 
film photopolymer laminated and patterned on top of the 
TFT substrate. 

 

 

Figure 2. a-Si:H devices and circuits fabricated on Kapton® (top) 
and colorless polyimide (bottom) substrates. 

 

Figure 3. Gas microwell detector with thick photopolymer 
laminated on a-Si:H devices on fabricated on polyimide. 

Organic or a-Si:H TFTs are also attractive devices for 
use in fabricating active backplanes for organic light 
emitting device (OLED) display backplanes. The current 
required for typical OLED pixels is low (µA) and can easily 
be provided by small TFTs.10 Figure 4 shows a simple a-
Si:H active OLED pixel fabricated on a glass substrate. A 
maximum pixel brightness of several hundred cd/m2 can be 
obtained with device voltage sufficiently low that it may be 
possible to correct for device instability using an external 
correction approach. The low processing temperatures 
required for a-Si:H or organic TFTs may also allow 
compatibility with barrier-coated or other flexible substrate 
approaches required for good OLED stability and lifetime. 

 

 

Figure 4. a-Si:H active OLED pixel (top) and pixel operation 
(bottom). 

 

Future Directions 

The low temperatures and simple processing required for a-
Si:H and organic TFT devices and circuits allows 
fabrication on arbitrary substrates including flexible 
polymers and, for organic devices, even cloth or paper. This 
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will allow a wide range of future large-area or low-cost 
electronic applications. 
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