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Abstract Heading 

Plastic electronic materials and high resolution printing 
methods may be important technologies for new classes of 
consumer electronic devices that are lightweight, mech-
anically flexible and bendable, and which can cover large 
areas at low cost. This paper summarizes some of our recent 
work in this area. It focuses on the materials and patterning 
techniques that we used to produce plastic active matrix 
backplane circuits for a type of paperlike display. It also 
presents some strategies for encapsulating and enhancing 
the bendablity of these devices. 

Introduction 

Organic materials and printing techniques that are capable 
of patterning them have the potential to play essential roles 
in two different classes of future electronics systems: 
ultrahigh density circuits that incorporate molecular-scale 
switching elements and new types of circuits that are 
lightweight and mechanically flexible. This latter area will 
be important not because of its potential for achieving high 
speed, density, etc. but because the circuits can be rugged 
and bendable, and because they can be printed rapidly over 
large areas at low cost. These features can be difficult to 
achieve with the brittle inorganic materials and sophis-
ticated processing techniques that are used for conventional 
electronics. Bendable plastic circuits will enable new 
devices – electronic paper, wearable computers or sensors, 
disposable wireless ID tags, etc. – that complement the 
types of systems that existing silicon-based electronics 
supports well (e.g. microprocessors, high density RAM, 
etc.). This field is relatively new (i.e. there are no 
entrenched technologies) and it relies on new patterning 
techniques and organic materials. 

Progress in flexible electronics is driven by (i) organic 
or otherwise unconventional materials that can be deposited 
on flexible supports, (ii) low cost, high resolution patterning 
techniques that can be used with these materials and 
substrates, (iii) component geometries that explore the 
(often unusual) properties of these materials in new ways, 
and (iv) approaches to take advantage of the unique 
characteristics of these printed circuits in devices. This 
paper provides a brief overview of some of our recent work 
on these materials and systems, with a focus on applications 

in electronic paperlike displays. It begins with an overview 
of the layout of the circuitry for these displays and of its 
integration with the electronic inks. The printing and 
fabrication techniques are then discussed; measurements of 
the electrical characteristics of the transistors in the circuit 
illustrate their performance and their suitability for 
electronic paper. We conclude by highlighting the advan-
tages and disadvantages of the fabrication methods and by 
assessing their potential application to devices that are more 
advanced than the one described here. 

Circuit Layout and Design 

The circuit for the prototype display consists of a square 
array of 256 transistors distributed over an area ~0.5x0.5 
ft2.1 Figure 1 shows a detailed view of the gate and source/ 
drain levels in a unit cell. The smallest features are the 
source/drain electrodes and the distance that separates them. 
In order to achieve the necessary switching speeds and 
current outputs for this application, the separation (i.e. 
transistor channel length) is ~10 µm and the electrodes and 
the wires that connect to them are ~10 µm wide; the width 
of the channel is ~100 µm. The transistors can be built with 
the source/drain electrodes beneath the organic semicon-
ductor (bottom contact; as illustrated in Figure 1) or they 
can be constructed with these electrodes on top of the 
semiconductor (top contact).  

The completed display comprises a top electrode of 
indium tin oxide (ITO) and an unpatterned layer of 
‘electronic ink’ laminated onto this backplane circuitry. 
Each transistor functions as a switch that locally controls the 
color of the 'ink', which is based on technologies developed 
for electrophoretic image display systems.1,2 Applying a 
voltage to a column (gate) and a row (drain) electrode 
activates the transistor located at the position where these 
electrodes intersect. Electric fields build up between the 
ITO and the electrodes (i.e. pixel electrodes, which are 
connected to the transistor source electrodes) that connect to 
pads that spatially define the pixels. These fields cause 
changes the color of the pixel, as observed through the ITO. 
Coordinated control of the transistors is achieved with 
external circuitry connected to the ITO layer and to pinouts 
that lead to the column and row electrodes.  
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Figure 1. Unit cell 

 
A transistor can switch a pixel if it provides sufficient 

'on' current to switch the pixels (~1 µA at 80 V), and small 
enough ‘leakage’ and ‘off’ currents to avoid unwanted 
switching (~30 nA at 80 V). In addition to these static 
characteristics, the driving scheme demands that the total 
capacitance associated with each pixel is sufficiently small 
to allow for millisecond switching times. This requirement 
places limits on the area of overlap of the gate with 
conductors on the source/drain level and the transistor 
channels; it stresses the need for fine features. 

Printing and Integration 

The electrical requirements of the transistors in the display 
circuit and the moderate to relatively low mobilities of 
organic semiconductors (i.e. <~1 cm2/Vs) demand high 
resolution patterning for the source/drain level of the circuit. 
We have developed procedures for using microcontact 
printing for this application.2-4 The techniques are attractive 
for plastic electronics because of their compatibility with 
reel-to-reel processing, their operational simplicity, their 
ability to pattern high resolution features on plastic 
substrates and their potential for patterning large areas at 
very low cost. This approach uses high resolution rubber 
stamps and ‘ink’s of molecules that form self-assembled 
monolayers on the surface that is printed. For the systems 
described here, we used a solution of hexadecanethiol 
(HDT) in ethanol as the ‘ink’ and a thin gold film on plastic 
as the substrate that we printed on. Figure 2 gives a 
schematic illustration of the process. The printed HDT acts 
as a resist for acqueous-based etching of the substrate. 
Removing the HDT after etching leaves a pattern of a 
conducting gold. The transistors can be completed by 
depositing organic semiconductor on top of electrodes 

formed in this fashion on a substrate that supports the gate 
and gate dielectric. Alternatively, these electrodes can be 
patterned on an elastomeric, conformable support that can 
then be physically laminated against a different substrate 
that is patterned with the semiconductor, the gate and the 
gate dielectric.5 This latter lamination procedure is 
illustrated in Figure 3. It has the advantage that it auto-
matically encapsulates the circuit at the neutral mechanical 
plane of the resulting structure. It also separates the 
deposition and patterning steps for the source/drain 
electrodes from the other components of the circuit. 
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Figure 2. Printing procedure 
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Figure 3. Lamination procedure 

Results 

Figure 4 shows an image of a printed flexible circuit formed 
according to the procedures described above.1 In this case, 
the circuit uses the bottom contact design. Figure 5 shows a 
magnified view of a similar circuit built using the 
lamination procedures outlined in Figure 3.5 In this case, the 
circuit is substantially waterproof; the image shows a circuit 
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immediately after removal from a water bath. In both circuit 
designs, the electrical properties of the transistors are good. 
Figure 6 shows the current-voltage characteristics of a 
laminated device before and after immersion in stirred 
soapy water for 3 hours.5 The on/off ratios of similar 
devices can be as high as 105-106, their effective mobilities 
are typically 0.1-0.5 cm2/Vs and they can be designed to 
achieve ‘on’ currents that satisfy the requirements for 
electronic paper display systems. The high operating vol-
tages are designed to match the high voltage requirements 
of the electronic inks.  
 

 

Figure 4. Printed plastic display circuit 

 

Figure 5. Laminated plastic circuit 
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Figure 6. Transistor characteristics 

 
 
Bonding the circuits to sheets of microencapsulated 

electrophoretic ink produces the displays. Figure 7 shows an 
image of one such display. Its total thickness is ~1 mm; the 
ink is reflective and it masks the drive circuit, which lies 

behind the ink layer. Coordinated control of the organic 
transistors is achieved with a small silicon-based circuit 
mounted on the backside of the display. The appearance and 
operation of the display is not affected by bending. 
 

 

Figure 7. Electronic paperlike display 

Conclusion 

The sophistication and flexibility of the patterning pro-
cedures, the high level of integration on plastic substrates, 
the large area coverage and the good performance of the 
organic transistors are all important featuers of the printed 
plastic display circuits described here. Although these 
circuits do not support a large enough number of pixels to 
be useful for consumer applications, many of the processing 
approaches and materials can be extended to systems with 
more pixels and/or higher resolution. 

The types of flexible circuits described here are also 
compatible with non-electrophoretic ‘inks’. We demon-
strated, for example, their use in small flexible displays that 
use thin layers of polymer dispersed liquid crystals 
(PDLCs).6 Other groups have also explored this combin-
ation. The Sarnoff/Penn State group used photolithogra-
phically defined organic circuits and flexible substrates to 
drive small PDLC displays.7 The Philips group reported 
small, ridid PDLC displays with many thousands of pixels 
and backplanes of photolithographically defined organic 
transistors on glass substrates.8 These and other efforts, 
taken together with our own work, strongly suggest that the 
technologies required for commercially viable, printed 
paperlike displays may be available soon. For this reason, as 
well as many others, we believe that printed flexible 
electronic systems display a bright future. 
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