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Abstract 

Print density mottle of the solid black images in 
electrophotographic printing is related to paper structure. 
We found that mottle in commercial papers has a strong 
correlation with PCC filler distribution, but a very weak 
correlation with the overall visual formation. We explain 
these observations using a new mathematical model that 
simulates the electrostatics of toner transfer. Simulations 
show that print density mottle is strongly influenced by 
spatial variations in the dielectric permittivity of paper and 
paper thickness variations. It is shown that the permittivity 
is strongly influenced by filler distribution and to a lesser 
extent by visual formation.  

Introduction 

Electrophotographic printing1-3 (e.g., Xerography) has 
recently become a commercially viable alternative to 
conventional printing in the area of short-run color printing. 
Relatively little is known, however, about how this process 
is influenced by the properties of the paper substrate. 
Paper’s heterogeneous spatial structure and its even more 
complex interactions with the electrostatics of the 
photoreceptor make the prediction of print quality in 
electrophotography very difficult. 

One of the emerging print quality issues associated with 
electrophotography is severe print mottle in solid images, 
particularly in color printing. Even for simple monochrome 
black printing, print density mottle is still clearly visible. 
Since toner penetrates very little into the paper, even after 
thermal fusing, print density mottle or toner thickness 
variation is primarily caused by uneven toner deposition 
onto the paper. 

In electrophotography, printing occurs when charged 
toner particles are electrostatically transferred from a 
photoreceptor plate onto the paper surface under the action 
of an electric field. Paper has often been treated as a 
uniform layer in designing the electrophotographic printing 
processes.1-3 In practice, however, paper is quite non-

uniform and non-homogeneous.4,5 This can give rise to print 
density mottle through variations in (a) mass density (b) 
paper thickness (c) moisture and (d) surface topography. 
While mass density and moisture have been shown to 
change the overall dielectric constant of paper,6 their point-
to-point variations can also lead to print density mottle 
through variations in toner transfer forces.7 In this paper we 
discuss experiments and numerical simulations showing 
how spatial variations in paper (fillers, formation, thickness 
variations) influence the uniformity of electrostatic transfer 
and, ultimately print density mottle. 

Analysis of Print Density Variations 

Methods and Materials: 
Experiments were performed on 5 commercial paper 

samples as well as standard handsheets. In commercial 
samples, the formation and filler distributions were 
analyzed. In the handsheets, only formation was examined, 
as they did not contain filler. The main source of filler in the 
commercial sheets was PCC. All papers were printed at 
100% (solid black) toner coverage on a Xerox 5090 copier. 

Formation and print density were measured on 20 mm 
x 20 mm zones. To relate paper structures to print density 
variations in the same region of the paper, print density and 
formation were measured on the same zones. As filler 
measurements were destructive, they were made on zones of 
the same size on sample sheets different from those printed. 
Statistical fluctuations in data were minimized by averaging 
measurements of all quantities over several zones per sheet 
and several sheets per sample (a total of 30 zones for print 
density and filler and 10 for print density distributions).  

Measurements of formation, filler and print density 
were made using the Paprican microscanner device.8 This 
device determines optical formation by measuring the 
variation of intensity of white light transmitted through a 
paper sheet. Print density was measured with the same 
device using light reflected from printed samples. The 
burnout method was used to reveal filler distributions near 
the paper surface.9 Light reflected from the burned-out 
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paper surface thus gives a reasonable indication of the filler 
distribution. The spatial resolution of the microscanner is 
approximately 120µm x 160µm. 

All PCC-filled commercial samples printed as 
described above always exhibited characteristic print 
density variations on length scales up to about 1-2mm. This 
mottle feature size was not, however, present in handsheet 
data of this investigation. 

Spatial distributions of formation, filler and print 
density were analyzed using the two-point density-density 
correlation, defined as 
 

( )( )myjximmjimyxG −++−= ),(),(),(    (1) 

 
where m(i,j) represents either formation, filler or print 
density fields. The indices i,j discrete pixels in data zones. 
The variables x,y are also discrete, and are defined over the 
same range. The quantity <m> denotes the mean value of 
the field in the area of a zone. Angled brackets imply that 
the product in Eq. (1) is spatially averaged over all points 
(i,j) in the zone (using periodic boundary conditions), and 
over all zones in a sample type. As paper is not isotropic, 
G(x,0) ≠ G(0,y). In all our formation measurements there 
was visible anisotropy. This was also present in the other 
measurements as well, although less apparent. Its origin in 
commercial sheets can be traced to the anisotropic fiber 
orientation. The correlation function was normalized by 
dividing it by the covariance of the corresponding field (i.e., 
G(0) = 1). 

Commercial Filled Sheets: 
Figures 1a-c show G(r) for the print density, filler 

distribution and formation corresponding to one of the 
commercial samples in the study (75g/m2, 14% filler). 
Machine and cross directions are indicated. Data of G(r) for 
all commercial samples was similar in trend to that shown 
here. The structure in the print density correlation function 
(Fig. 1a) predicts a visually distinct contrast in print density 
between structures on the scale r1 ≈  650µm and the 
characteristic space between them d ≈  0.55 µm (CD) (r1 ≈  
900µm, d ≈  1.1µm in MD). The correlation function of the 
filler distribution (Fig. 1b) in the commercial sheets predicts 
spatial structure for the fillers commensurate to that of print 
density. The correlation function of the optical formation of 
the commercial sheets (Fig. 1c) predicts floc sizes greater 
than 5mm, and bears little resemblance to the correlation 
functions of print density and filler distributions on the scale 
of ~1-2mm. (The decay of the correlation to a non-zero 
value at large distances is a finite-size effect, artifact of the 
small size of the sampling zone relative to the typical floc 
size).  
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Figure 1. Two-point correlation function of (a) print density, (b) 
filler and (c) formation of commercial PPC-filled sheets  

Handsheets: 
Figures 2a-b show plots of G(r) for print density and 

formation in handsheets along the x and y directions. The 
print density correlation function predicts a uniform 
appearance of print density on scales 5-10mm (consistent 
with visual observation), with very weak features on scales 
around 1mm, in contrast to the PCC-filled commercial 
samples. The formation G(r) also displays large finite-size 
effects, another indication of large flocs on the order of 5-
10mm. 
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Figure 2. Two-point correlation function of (a) print density and 
(b) formation of handsheets 

 

Discussion: 
The transfer of toners to paper occurs by a local 

electrostatic field created between the photoreceptor and 
toner layers. As the electric field must act through the 
paper, it is strengthened or weakened in proportion to the 
local dielectric constant of the paper. The local dielectric 
constant of the paper depends on the density and volume 
fractions of the constituents within the paper.7 (Other factors 
not considered here, and influencing the toner transfer force 
are local paper thickness (see below), roughness and 
moisture content). In the case of commercial filled sheets, 
the larger dielectric constant of PCC filler over that of 
cellulose suggests that filler-rich regions of filler should be 
strongly correlated to regions of print density variation. This 
is a plausible reason for the similar length scale of features 
in the toner and filler densities at the 1-2mm scale. In the 
case of handsheets, the local dielectric constant can only 
depend on formation. The finite size effect of Fig. 2(b) 
precludes us from making a conclusive link between visual 
formation and print density in hand sheets.  

Modeling Toner Transfer 

We recently reported on a model that simulates toner 
transfer forces in electrophotography. The model divides the 
paper into numerically small discrete elements ej, the 
surface of each carrying a charge density σj. Toner forces at 

each point in the toner layer are computed by integrating the 
force fields due to all charged elements. The basic input into 
the model is an approximation of the local corona charge 
field of the paper, given by  
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where V is the applied machine voltage, >< j

ph  is the 
average local paper thickness over an element, hd is the 
thickness of the printing gap, and j

pε  is the local, 
effective, dielectric constant defined throughout the volume 
of an element. It is approximated by the theory of binary 
mixtures.6 

The charge density σj provides the force field necessary 
for toner transfer. Inspection of Eq. (2) shows that the 
strength of this field depends on two main paper factors: 
local dielectric constant of the paper j

pε  and local paper 
thickness. 

Figure 3a shows a gray-scale surface of a simulated 
paper (produced by a 3D fiber-network model of paper). 
Lighter/darker pixels denote lower/higher heights, 
respectively. The x and y axes are in units of 5µm (similarly 
for Figs. 3b-c). The simulated paper comprised 89% fibers 
(by mass), from a Poisson length distribution with mean 
length ≈ 1.5mm, and 11% Poisson-distributed filler 
agglomerates of mean size of 10µm. Figure 3b shows the 
corresponding map of the x-y filler distribution. Lighter 
colors represent higher filler concentrations. The white 
rectangular box shown in Figs. 3a-b represents an area 
within which the toner transfer model was used to compute 
the transfer forces (Fig. 3c) on a uniform layer of toner 
representing a solid print. Dark/light pixels denote high/low 
toner transfer forces. Force is in units of 0.5µN, V = 5kV 
and hd = 25µm. Toners were treated as spherical particles 
with a radius 5µm and charge 5 x 10-15C. Figures 3b-c show 
a clear spatial correlation between higher toner transfer 
forces and filler-rich regions, as seen experimentally. The 
effects of paper thickness variations have also been 
examined using a model that directly solves Poisson 
equations. Results will be presented in an upcoming 
publication. 
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Figure 3. (a) Surface profile of simulated filled paper (b) filler 
distribution, (c) force map on toner layer. 
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