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Abstract 

The current ANSI standard method for evaluating the image 
stability of photographic prints (ANSI IT9.9-1996) calls for 
the use of densitometry in order to determine the extent of 
light-induced fade and to provide an estimate of print-life 
under real-world conditions. End-of-life criteria based on 
densitometry can involve monitoring simultaneously as 
many as 24 different end-points (excluding changes to Dmin). 
Conceivably, end-of-life criteria based on colorimetric 
measures such as ∆E or ∆C could reduce the number of end-
points from 24 to as few as 7—one criterion for each 
primary (cyan, magenta, yellow), secondary (blue, green, 
red), and neutral (gray/black) test patch. In the context of 
evaluating inkjet photographic prints based on hundreds of 
different combinations of various manufacturers’ inks and 
receivers, we have been following the kinetics of dye-fade 
by both Status A densitometry and CIELAB colorimetry. In 
this report, we will begin to explore the empirical 
correlation between densitometric and colorimetric 
measures of color change.  

Introduction 

The explosion of digital images available from scanners, 
digital cameras, and the Internet has driven a commensurate 
demand for printing those images. Today there are multiple 
technologies available for printing digital images on the 
desktop in the home and/or office. “Photo quality” inkjet 
printers are available for under $100 that can print on media 
ranging from plain paper to heavyweight photographic 
stock. There are concerns regarding image stability and 
physical durability, however, with respect to the long-term 
storage and/or display of inkjet prints.1-11 There are several 
current standards for assessing the image stability of print 
materials with respect to both light- and heat-induced 
effects on image stability.12-14 Another issue in quantifying 
the image stability of a print has to do with how change is 
monitored. Although status A densitometry (“∆D”) is 
recommended in the current ANSI standard,12 CIELAB 
colorimetry (“∆E”)15 has also been used to compare changes 
in color quality for light-induced fade.16 

In this report, we explore the relationship between 
densitometric and colorimetric measures of change in the 
context of light fade end-points for inkjet photographic 
prints.  

Materials and Methods 

Materials  
The following printers (and their recommended inks) 

were used to generate the test targets used for this study: 
Hewlett-Packard DeskJet 990, Epson Stylus Photo 870, 
Canon 8200 and S800, Lexmark Z55, and Kodak personal 
picture maker 200. In addition to the printer manufacturers’ 
recommended photo-quality papers, a variety of third-party 
papers are also included in this analysis. The inks and 
papers are representative of commercial products available 
at retail in 2001.  

Methods 
The test targets and test methods have been described 

previously.4,11 The test targets used in this study comprised 
step wedges of cyan, magenta, yellow, red, green, blue, and 
neutral. Each wedge included four coverages of each color: 
25, 50, 75, and 100%. Care was taken to ensure that pure 
colors were printed wherever possible. The test targets were 
treated under the following conditions: (a) 80 klux, 
Plexiglas-filtered cool white fluorescent, 23 + 2oC/50 + 3% 
RH, and (b) 5.4 klux, Plexiglas-filtered cool white 
fluorescent, 23 + 2oC/50 + 3% RH. The samples were 
rotated either manually or mechanically to ensure 
homogeneous exposure during the course of the study.  

The test targets were monitored periodically by status A 
densitometry and CIELAB colorimetry using a 
Gretag/Macbeth Spectro Scan T 3.273 spectrophotometer/ 
colorimeter. At each time interval, plots of ∆D and ∆E vs 
initial density (Do) were made for each primary color, 
secondary color, and neutral density. For the ∆D plots of the 
secondary colors, each of the two primary colors that 
comprise the secondary color was plotted separately. For the 
neutral density wedge, all three primary colors were plotted. 
From these plots, ∆D and ∆E for each color were 
interpolated to D0 = 1.0 above Dmin at each exposure interval.  
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As a means of correlating ∆D and ∆E, densitometric 
print-life end-points based on guidelines contained in ANSI 
IT9.9 –1996 (see Table 1) were correlated with ∆E as 
follows. The cumulative exposures required to reach the 
various densitometric end-points were determined by 
plotting ∆D (referenced to D0 = 1.0 as described above) vs 
cumulative exposure for each ink-paper combination. For 
almost all cases, either a natural log or linear least squares 
equation provided a good fit through each data set. To be 
included in the subsequent analysis, the following criteria 
were applied to each data set: (a) the correlation coefficient 
(R2) must be >0.97, and (b) the end-point must have been 
reached after the first reading and before the last reading (no 
extrapolated end-points). For the 30% end-points (1-12 in 
Table 1), ∆D was set to 0.30, and the best-fit equation was 
solved for cumulative exposure. For the 15% differential 
fade end-points (13-24 in Table 1), the best-fit lines for each 
primary were mathematically subtracted, the difference in 
density between the two primaries was set to 0.15, and 
cumulative exposure was calculated. Using the cumulative 
exposures thus calculated, ∆E at each densitometric end-
point was derived from the best-fit equations of ∆E vs 
cumulative exposure. For a given ink-paper combination, 
multiple end-points may be reached, which satisfy the 
above criteria and all were included in the correlation; 
however, for the secondary and neutral colors, only the first 
end-point reached was used in the correlation.  

Table 1. End-point criteria based on ANSI IT9.9 – 1996. 
No. Description ∆D 
1 Pure Yellow Patch 0.30 
2 Yellow in Green Patch 0.30 
3 Yellow in Red Patch 0.30 
4 Yellow in Neutral Patch 0.30 
5 Pure Magenta Patch 0.30 
6 Magenta in Blue Patch 0.30 
7 Magenta in Red Patch 0.30 
8 Magenta in Neutral Patch 0.30 
9 Pure Cyan Patch 0.30 

10 Cyan in Green Patch 0.30 
11 Cyan in Blue Patch 0.30 
12 Cyan in Neutral Patch 0.30 
13 Yellow-Cyan Color Balance in Green 0.15 
14 Yellow-Magenta Color Balance in Red 0.15 
15 Yellow-Cyan Color Balance in Neutral 0.15 

16 Yellow-Magenta Color Balance in 
Neutral 0.15 

17 Magenta-Cyan Color Balance in Blue 0.15 
18 Magenta-Yellow Color Balance in Red 0.15 
19 Magenta-Cyan Color Balance in Neutral 0.15 

20 Magenta-Yellow Color Balance in 
Neutral 0.15 

21 Cyan-Yellow Color Balance in Green 0.15 
22 Cyan-Magenta Color Balance in Blue 0.15 
23 Cyan-Yellow Color Balance in Neutral 0.15 
24 Cyan-Magenta Color Balance in Neutral 0.15 

Results and Discussion 

Overview  
In previous studies of light-induced fade of inkjet 

prints, both densitometry and colorimetry have been used to 
monitor the extent of dye fade.1,4,8,9,11 Hofmann, et al., 
attempted to correlate ∆D and ∆E for a variety of image 
stability tests, including light, thermal, and pollutant fade.17 
In their light fade example, they concluded that ∆E = 17 
correlated well with density changes of 20% magenta, 30% 
cyan, and 35% yellow, respectively. It was suggested that 
∆E of about 15 might be a good approximation for the end-
point criteria given in ANSI IT9.9.  

One argument for the use of ∆E-based end-points is 
that the ∆E formula was designed to uniformly evaluate 
small to medium surface color differences.18 An additional 
benefit of ∆E is that only a single end-point criterion would 
be required for each primary, secondary, and neutral color, 
resulting in a list of only 7 end-point criteria vs the list of 24 
separate densitometric criteria given in Table 1, excluding 
end-points related to changes in Dmin.  

On the other hand, the correlation of ∆E, as commonly 
defined (see Eq. 1 below),16 with perceived color differences 
has been found to vary greatly depending upon the hue, 
lightness, and saturation of the reference color.19 A revised 
CIE 2000 color difference formula, ∆E00, has been adopted, 
which reportedly improves the correlation to perceived 
color differences, especially in the blue and gray color 
regions.19 To be consistent with previous work in this field, 
we have used the following formula for ∆E:  

 ∆E = ∆E*ab = [∆L*2 + ∆a*2 + ∆b*2]1/2   (1) 

Correlation of Densitometric End-Points with ∆E  
Using the methodology described above, we have 

compiled a correlation table of the densitometric end-point 
criteria listed in Table 1 with the calculated values of ∆E at 
those end-points for over 300 different data sets. Table 2 
summarizes these results, where n is the number of times 
that specific end-point was encountered, ∆Eave is the average 
of the ∆E values calculated for that end-point, and σ is the 
standard deviation.  

Focusing first on the pure primaries (end-points 1, 5, 
and 9), ∆Eave compiled for these end-points range from a 
low of 11 for cyan (n = 73) to 18 for magenta (n = 96) and 
19 yellow (n = 65). These values for ∆E are reasonably 
consistent, given the relatively large standard deviations, 
with those reported by Hofmann, et al.17 Other workers in 
this field have postulated that the human observer should be 
most sensitive to changes in magenta, followed by cyan and 
yellow, and have weighted the densitometric endpoints 
accordingly.20 However, if indeed colorimetric changes 
based on ∆E are uniformly weighted for the human visual 
response; these results suggest there is roughly equal visual 
sensitivity to a 0.30 density loss from a 1.0 initial density 
for magenta and yellow, with a somewhat lesser sensitivity 
to 0.30 loss for cyan. 
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For the secondary colors there are four possible end-
point criteria, and for the neutral patch, there are six. For 
this analysis, only the first one of the multiple end-points 
per color that is reached for a given test sample is included 
in Table 2. It can be seen that for each of these color patches 
one of the multiple criteria tends to occur most frequently.  

For red, 0.30 yellow density loss (end-point 3) is the 
end-point most often encountered, with ∆Eave = 17 (n = 50). 
Likewise for green, 0.30 density loss in the yellow record 
(end-point 2) is also the most often encountered, ∆Eave = 20 
(n = 43). In the case of blue, 0.30 magenta loss (end-point 
6) yields ∆Eave = 18 (n = 74). These ∆Eave values are 
reasonably consistent with those found for the pure yellow 
and magenta end-points. For the neutral patch, 0.30 loss of 
yellow is frequently encountered. In this case, ∆Eave = 12 is 
much lower; however, σ = 6 is quite high.  

The only other secondary or neutral patch end-points 
with 10 or more occurrences are the yellow-cyan color 
balance in green (end-point 13, n = 10) and the yellow-
magenta color balance in red (end-point 14, n = 21). Again, 
given the substantial standard deviations, these values of 
∆Eave are generally consistent with those discussed above.  

Additional Observations 
To gain further insights, we also looked at the ∆D vs 

∆E correlation for the 80-klux and 5.4-klux conditions 
separately. In general, there were far fewer end-points 
reached under the 5.4-klux condition. For those end-points 
for which a statistically significant number of end-points 
were reached under both exposure conditions, the results 
were in reasonably good agreement.  

We also looked at the ∆D vs ∆E correlation separately 
for porous vs swellable ink-receptive layers. The results 
were again reasonably consistent. It is interesting to note 
that σ was consistently lower for the swellable receivers. 
Further studies are required to better understand the factors 
responsible for the observed variability in the correlation.  

Summary 

We were able to correlate changes in colorimetry, as 
measured by ∆E, with light fade end-points defined in terms 
of density change, ∆D for over 300 inkjet test targets. A 
common value for ∆E for each end-point was not obtained, 
however, and the calculated standard deviations were quite 
large. Further studies are recommended, including the use 
of ∆E00 in place of ∆E*ab.  
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