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Abstract  

The chemical environment within the receiving layer(s) is 
known to influence the permanence of dye-based ink jet 
graphics. A correlation was observed between dye light 
fastness and the concentration dependence of UV / VIS 
absorption in dyed acrylamide and polyvinyl pyrrolidone 
polymers. This has been interpreted as a consequence of 
media influenced dye aggregation. Computer modeling of 
dye polymer interactions supports this interpretation in the 
case of the polyvinyl pyrrolidone and acrylamide polymers, 
but suggests other factors can also play a role in the 
favorable photo stability of polyvinyl alcohol images. The 
validity of the computer models and dyed polymer 
techniques employed in understanding dye photo fade are 
addressed. 

Introduction 

Image photo stability of dye based ink jet prints is an 
ongoing area of study. Many factors may influence this, but 
it is known that interactions between dye and media play a 
large role.1 More specifically, the degree of dye aggregation 
within the receiving media has been reported to influence 
dye photo stability.2 The more strongly a dye aggregates, the 
more it behaves like a micro pigment and will therefore be 
more photo stable. 
 The solvating ability of the environment should impact 
the amount of dye aggregation. There will be a smaller 
amount of dye aggregate in highly solvating media than 
expected in poorly solvating media. The solvating ability of 
different media will obviously vary greatly depending on 
the polymers employed and the structure of the specific 
dyes involved. 
 Computer simulations can be used to obtain theoretical 
interaction energies of a dye and polymer network. 
Essentially, an energy value can be obtained that reflects the 
likelihood of uniform dispersion of dye within the polymer. 
Dyes in systems with less favorable dye / polymer 
interactions will be more poorly dispersed and have a 
greater tendency to form aggregates. 

Evidence for dye aggregation can be obtained by 
comparing the UV/Vis spectra of the dye at different 
concentrations in the polymer. For an aggregated dye, a 
change in λ max is expected at higher concentrations. In an 
aggregate, strong electronic interactions occur which cause 
the individual molecules to act as a single entity. The effect 
of these electronic interactions can also be seen as a change 
in the absorption profile of the dyes. 3 

In the present work, model calculations were used to 
predict the likelihood of Acid Yellow 23 aggregation in 
commercially available polymers, namely polyvinyl 
pyrrolidone (PVP), polyacrylamide (PAM) and polyvinyl 
alcohol (PVOH). Spectral analysis ( UV / Vis ) of films cast 
from formulations of the individual polymers containing 
different concentrations of the dye confirmed the validity of 
the computer model in predicting aggregation tendencies of 
this dye. 

Figure 1. Structures of polymers and dye. 
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The relationship of aggregation to photostabilty was 
determined by accelerated aging of these films in a xenon 
weatherometer. Dye loss was conveniently measured by 
loss of UV / Vis absorption. By using dyed films, the dye / 
polymer chemistry could be explicitly evaluated, negating 
other factors relating to the printing process that may have 
confused the results. 

As final verification of these methods, films of the 
polymers in question were cast, dried and printed on using a 
HP ink set and printer. The printed images were exposed 
under exactly the same conditions as the dyed polymer 
films and dye degradation was measured in terms of optical 
density loss. 

While increased dye aggregation was consistent with 
the improved photopermanence of the dye in PAM vs PVP, 
results showing good stability in PVOH without significant 
dye aggregation suggest the importance of other stabilizing 
mechanisms. 

Experimental 

Computational Details 
 Simulated interaction energies were estimated via a 
molecular dynamics method using the condensed phase 
force field COMPASS.4 Models of amorphous polymer 
(typically 20mers), dye, and polymer/dye blends were 
constructed as a cubic cell of roughly 20 Angstroms/side 
using a Monte Carlo procedure which is a combination of 
that described by Theodorou2 and Meirovitch3. Each cubic 
cell was packed at the experimental density (or a reasonable 
approximation thereof) and subsequently equilibrated via 
constant temperature molecular dynamics, with periodic 
boundary conditions, for at least 50 ps. Production runs of 
100 ps followed, during which “snapshots” of the systems 
were collected every 5 ps. The cohesive energies of each 
sample were calculated4 and averaged over the entire 
production run. Energies of mixing at a specified 
composition (5% by volume of dye) were calculated as 
described by Case and Honeycutt.5 All simulations were 
done within the Materials Studio software of Accelrys, Inc. 
 The computer model was initially verified by 
comparisons with values for solubility parameters obtained 
in the literature. 

Table 1. Calculated Hildebrand Solubility Parameters – 
Comparison to Experiment 
Compound Calculated δ 

(J/cm3)1/2 
Experimental δ 

Water 48.5 47.9 
Ethylene Glycol 34.8 32.9 – 34.9 
Triethylene Glycol 27.8 26.3 – 29.1 
Polyvinyl alcohol 26.8 25.8 – 29.1 
Polyacrylamide 27.5 23.1 (N-isopropyl) 
Polyethylene oxide 22.0 20.4 
 

Dyed Polymer Details 
 Acid Yellow 23 was dissolved into aqueous solutions 
of PVP, PVOH and PAM at two concentrations of 0.5% and 
2.0% weight per dry weight of polymer. 

Coatings were applied onto 1.5" diameter quartz discs 
using a Headway Spin Coater Model EC 101DT-1790. 
Rotation speed and duration were adjusted to achieve film 
thicknesses of 10 microns and 2 microns. UV/Vis spectra of 
the resultant discs were taken using a Perkin Elmer Lambda 
9 Spectrophotometer. The discs were then exposed in an 
Atlas Ci65 Weatherometer, installed with a Xenon arc lamp 
and inner and outer borosilicate filters, for 48 hours. The 
exposure conditions were power = 0.35 Wm2, relative 
humidity = 50% and temperature = 50°C.After exposure, 
final UV/Vis spectra were taken using the Lambda 9. 
 
Printed Polymer Details  
 Aqueous solutions of PVP, PVOH and PAM (all at 
10% NV) were drawn down onto a clear polyester substrate 
using a Meyer bar so that a 20-micron coating thickness was 
obtained after oven drying. 
 Yellow, magenta and cyan color blocks were printed on 
the samples using a HP 970 Cxi desk jet. Initial optical 
density measurements on the color blocks were taken using 
an X-Rite TR938 Spectrophotometer. The resultant prints 
were exposed in an Atlas Ci65 Weatherometer, installed 
with a Xenon arc lamp and inner and outer borosilicate 
filters, for 48 hours. The exposure conditions were power = 
0.35 Wm2, relative humidity = 50% and temperature = 
50°C.After exposure final optical density measurements 
were taken with the X_rite Spectrophotometer. The percent 
loss in optical density ((initial-final/initial) x100) is 
reported. 

Results and Discussion 

The computational results show that the dye has a good 
affinity for the vinyl pyrrolidone and vinyl alcohol 
homopolymers but not for the acrylamide homopolymer 
since less mixing is expected for the higher interaction 
energies. This implies that the dye is more likely to 
aggregate in the polyacrylamide than in the polyvinyl 
alcohol and polyvinyl pyrrolidone. It is interesting to note 
that the polyacrylamide has the best affinity for water and 
polyvinyl alcohol the best affinity for triethylene glycol of 
the three examined. 

Table 2. Calculated Energy of Mixing (J/cm3) and 
Solubility Parameters (J/cm3)1/2 

Polymer δ --------- dE mix--------- 
Triethylene 

H2O        Glycol       A.Y. 23 
  40%          20%             5% 

PAM 27.5 -19.1 14.3 51.8 

PVP 19.8 -21.0 35.6 -1.0 

PVOH 26.8 -118.1 0.2 0.0 
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These results were borne out by the UV / Vis spectra of 
the dyed polymer films, Figure 2. Acid Yellow 23 in PVP 
did not exhibit the concentration dependence of λ max seen 
in the PAM sample indicating dye aggregation in PAM but 
not in PVP. 

 

 

Figure 2. Concentration dependence of dye absorption in PVP vs. 
PAM  

 
Comparing the amount of dye degradation after 

exposure to the Xenon source, we find that the PVP and 
PAM dyed polymer film samples behave very differently, 
Figure 3. After a 96 hour exposure, the dye was completely 
lost in the PVP film but remained intact in the PAM film. 
Taken together with the above results, this appears to offer a 
correlation between dye aggregation and photo stability. 

 
 

 

Figure 3. Loss of Dye from PVP and PAM films, 2% dye 
concentration. 

 
 Xenon exposure of the printed films shows the same 
trends in dye stability, substantiating the application of dyed 
film studies to printed articles.  

It can be concluded that theoretical and experimental 
evidence has been obtained that dye aggregation occurs in 
PAM and not in PVP. Additionally, experimental evidence 
confirms that the extent of dye degradation in PVP is more 
severe than in PAM. This holds true for both dyed polymer 
and printed polymer films. This infers that aggregation does 
play a role in stabilizing the dye against irradiance. 

 
 
 
 
 

Figure 4. Photo stability of Printed Polymer Films. 

 
 
 
 
 

Figure 4. Photo stability of Printed Polymer Films 

 
The case for polyvinyl alcohol, however, appears 

dramatically different. Theoretical and preliminary 
experimental information suggests that Acid Yellow 23 
does not aggregate in this polymer yet the printed polymer 
samples are extremely stable towards Xenon exposure. 
Consequentially, it is suggested that factors other than dye 
aggregation can be responsible for enhanced dye photo 
stability. In the case of PVOH, for example, a large 
hydrogen bond network involving both dye and polymer 
creates the possibility for more rapid deactivation of the 
excited dye. It should be noted that more experimental 
evidence is required to substantiate this hypothesis. 

Conclusion 

The computer modeling and experimental tools used in the 
study indicate that dye aggregation can influence dye photo 
stability in the case of Acid Yellow 23. With respect to this 
dye in polyvinyl pyrrolidone and polyacrylamide, the 
computer model successfully predicts photo stability in 
terms of aggregation effects, aggregation is both predicted 
and seen, and photo stability increases.  

The situation for polyvinyl alcohol and Acid Yellow 23 
appears different. The computer model does not predict dye 
aggregation in this polymer and preliminary experiments 
substantiate the prediction. Thus, it is suggested that 
although aggregation effects can provide extended photo 
permanence other mechanisms such as hydrogen bonding 
between the dye and polymer can be as equally effective.  
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