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Abstract

Inkjet, thermal dye transfer, and electrophotography are
among the technologies currently capable of producing
digital photographic prints on the desktop. This presentation
examines the various factors that affect the image stability
of photographic prints produced by these technologies. In
addition to accelerated light fade testing, we will also
compare the dark stability of prints as a function of heat,
humidity, and ozone.

Introduction

The explosion of digital images available from scanners,
digital cameras, and the Internet has driven a commen-surate
demand for printing those images. Today, there are multiple
technologies available for printing digital images on the
desktop in the home and/or office. “Photo quality” inkjet
printers are available for under $100 that can print on media
ranging from plain paper to heavy weight photographic
stock. Desktop color electrophotographic printers, starting at
under $1000, offer higher printing speeds and lower cost per
page than inkjet, but at this time are optimized for mostly
plain paper printing. Thermal dye transfer printers ranging
from small format, battery-powered, “card” printers for under
$400, to page-size digital photoprinters that retail for as
much as $5000, produce prints on special media that very
closely replicate the performance of traditional silver halide
(AgX) photographs.

These same three technologies have also been proposed
for both retail and wholesale digital print services. When
these technologies are optimized for printing digital
photographs, the image quality is comparable to traditional
AgX-based systems. There are concerns regarding image
stability and physical durability, however, that have
prevented the widespread application of these alternate
technologies in the production of photographs intended for
long-term storage and/or display. Inkjet, especially, has been
the subject of numerous studies for the effect of various
environmental factors on long-term display.1-11 The type of
ink (pigment vs dye) and media (porous vs swellable) can
have a profound impact on the ability of the photograph to

resist the effects of light, heat and humidity, and
environmental pollutants such as ozone.

In this report, we compare the image stability of
photographic output for a variety of desktop printers that
span inkjet, electrophotographic, and thermal dye transfer
systems (see Table 1) with respect to the effects of light,
ozone, and heat and humidity.

Materials and Methods

Materials
The marking materials (inks, toners, dye donors) were

used as recommended by the printer manufacturer, and are
representative of products available at retail in the second
half of 2001. Likewise, the image receivers were also
current-generation, OEM-branded products that most closely
matched the look and feel of a traditional photographic print.
For the color electrophotographic printers H and I, there is
no equivalent photographic paper available. Therefore, we
chose to use a synthetic paper marketed by Hewlett-Packard
in both printers that is claimed to be especially durable.

Methods
The test targets and test methods have been described

previously.2,4-6,11 The test targets were treated under the
following conditions: (a) 80 klux, Plexiglas-filtered cool
white fluorescent, 23   +   2oC/50    +    3% RH, (b) 5.4 klux,
Plexiglas-filtered cool white fluorescent, 23    +    2oC/50   +   3%
RH, (c) 1.0 ppm ozone, dark, 23    +    2oC/50    +    3% RH, (d)
dark, free-hanging, 38   +   2oC/80   +   3% RH, and (e) dark, free-
hanging, 50    +    2oCoC/50   +   3% RH. The test targets were
monitored periodically by both densitometry and colorimetry
and returned for continued treatment. Only the results of
conditions (a), (c), (d) and (e) are reported at this time. It has
been previously reported that porous inkjet samples treated
under condition (b) suffer large apparent reciprocity
deviations because of the presence of trace levels of ambient
ozone.11 The results of condition (b) will be reported
separately.
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Table 1. Desktop printing systems used for t h i s
study .
System Printer Paper Type*

A
EPSON Stylus
Photo 890

EPSON Premium
Glossy Photo Paper
(S041286 – 2001)

IJ-DP

B
EPSON Stylus
Photo 890

EPSON ColorLife
Photo Paper,
Semigloss (S041500)

IJ-DS

C

KODAK
Personal
Picture Maker
200

KODAK Ultima
Picture Paper, High
Gloss (1160753)

IJ-DS

D

HEWLETT-
PACKARD
Photosmart
100

HEWLETT-
PACKARD Glossy
Photo Paper (C7890A)

IJ-DP

E
HEWLETT-
PACKARD
DeskJet 990

HEWLETT-
PACKARD Colorfast
Photo Paper, Glossy
(C7013A)

IJ-DS

F
EPSON Stylus
Photo 2000P

EPSON Premium
Luster Photo Paper
(S041405)

IJ-PP

G KODAK XLS
8650

KODAK IMAGE
MAGIC Paper (w/
KODAK
PROFESSIONAL
EKTATHERMXTRAL
IFE Media)

TDT

H

HEWLETT-
PACKARD
Color LaserJet
4550

HEWLETT-
PACKARD LaserJet
Tough Paper (Q1298A)

EP

I
LEXMARK
C720

HEWLETT-
PACKARD LaserJet
Tough Paper (Q1298A)

EP

*Key: IJ-DP = inkjet, dye-based ink, porous receiver; IJ-DS =
inkjet, dye-based ink, swellable receiver; IJ-PP = inkjet,
pigmented ink, porous receiver; TDT = thermal dye transfer; EP
= electrophotography.

Results and Discussion

Overview
There are several current international standards for

assessing the image stability of print materials with respect
to both light- and heat-induced effects on image stability.12

However, standardized methods do not yet exist for the
assessment of the effect of humidity and air pollutants, such
as ozone on image stability. Therefore, we have adapted
previously described methods for the treatment of inkjet
photographic prints with humidity and ozone.2,6

Another issue in quantifying the image stability of a
photographic print has to do with how change is monitored.
Although status A densitometry (“∆D”) is recommended in
the ANSI standard,12a CIELAB colorimetry (“∆E”) has also
been used to compare changes in color quality.12b,12c,13 In the
case of humidity, changes in sharpness have also been noted,
in addition to changes in hue and/or density.1 In this study,
we report changes in terms of both ∆D and ∆E for the worst
color, referenced to an interpolated starting density of 0.5,
corrected for D-min.

General Observations
Tables 2-5 summarize the effects of treatment

conditions (a), (c), (d), and (e). It can be seen that in several
cases, the worst color as measured by the two methods is
different. Also, similar values of ∆D may often correspond
to significantly different values of ∆E, depending upon the
specific materials and color being measured.15 The use of
either ∆D or ∆E, however, produces similar relative
rankings of the test samples in each case. To simplify the
following discussion, we have chosen to compare ∆D values
in the context of the relative performance of the various
technologies.

Table 2. Results for condition (a), 56 days.

Colorimetry Densitometry

System
∆E Worst

color
∆D Worst

color

Rel.
∆D

A 30 M -0.33 M 3.5
B 17 M -0.21 R(M) 2.2
C 14 Y -0.17 Y 1.8
D 46 M -0.48 M 5.0
E 22 M -0.22 M 2.3
F 7.7 M -0.10 C 1.0
G 18 R -0.29 R(Y) 3.0
H 41 Y -0.45 Y 4.7
I 30 Y -0.42 Y 4.4

Table 3. Results for condition (c), 56 days.

Colorimetry Densitometry

System
∆E Worst

color
∆D Worst

color
Rel.
∆D

A 47 M -0.49 M 26
B 2.5 R -0.027 R(M) 1.4
C 32 C -0.43 C 22
D 46 M -0.50 M 26
E 3.9 M -0.048 M 2.5
F 14 B -0.014 C 7.1
G 3.4 Y -0.045 Y 2.4
H 2.2 B +0.019 G(Y) 1.0
I 1.3 Y -0.020 Y 1.0
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Table 4. Results for condition (d), 28 days.

Colorimetry Densitometry

System
∆E Worst

color
∆D Worst

color

Rel.
∆D

A 3.5 G -0.077 C 5.5
B 5.5 G +0.085 G(Y) 6.0
C 18 G +0.24 G(Y) 17
D 11 K +0.16 C 11
E 15 M +0.18 M 13
F 2.8 B -0.029 C 2.1
G 2.2 B -0.048 R(Y) 3.4
H 0.92 R -0.014 G(Y) 1.0
I 2.3 Y -0.033 Y 2.4

Table 5. Results for condition (e), 28 days.

Colorimetry Densitometry

System
∆E Worst

color
∆D Worst

color

Rel.
∆D

A 3.2 G,R -0.065 G(Y) 5.5
B 1.3 G -0.019 C 1.6
C 4.8 R -0.054 M 4.5
D 11 M -0.14 C 11
E 0.83 G -0.012 K(C) 1.0
F 3.4 M -0.048 C 4.0
G 3.6 Y -0.056 Y 4.7
H 1.7 Y -0.020 Y 1.7
I 2.0 Y -0.016 Y 1.4

In many cases it is also worth noting that a secondary
color or neutral exhibits the greatest amount of change.
Although the phenomenon of dye-dye interactions (also
referred to as “catalytic fade”) in secondary colors has been
previously reported for light fade studies of inkjet prints,16

similar phenomena have not been widely reported for other
types of image degradation and/or imaging technologies.
Thus, it is important to reinforce the need to monitor these
colors in addition to the primary colors in these types of
tests.

Light Fade
In general, light affects prints that are on display,

opposed to those that are being stored. All samples in this
study exhibit a noticeable degree of light-induced fade after
56 days of continuous 80-klux exposure (see Table 2).
Generally, there is good correlation in a relative sense
between densitometry and colorimetry for these results. The
IJ-PP system (F) performed the best under these conditions,
followed closely by the three IJ-DS systems (B, C, and E).
It is interesting to note that although the electrophoto-
graphic systems (H and I) show very good light fade
resistance through 28 days,1 both systems exhibit rapid
yellow fading between 28 and 56 days of exposure. Overall,
compared to the results for the other conditions as

summarized in Tables 3-5, there was less differentiation
among the different technologies with respect to light-
induced image degradation.

Ozone Sensitivity
Ozone has long been known to bleach certain dyes and

pigments.17 It is more likely to affect prints that are
displayed without protection to the ambient environment,
opposed to prints on display behind glass or those in
storage. Other pollutant gases, such as nitrogen dioxide and
sulfur dioxide have been reported to be much less damaging
to inkjet prints than ozone.9,18 As evidenced by the data in
Table 3, the two EP systems (H, I) are the most stable with
respect to ozone, followed closely by the TDT system (G),
and then by two IJ-DS systems (E, B). The other three,
inkjet systems are significantly more sensitive to ozone,
especially the IJ-DP systems (A, D). In fact, the ozone
sensitivity of similar Epson printing systems has been
recently reported in some detail.18 Compared to the light fade
results for which a range of about 5X in ∆D is observed,
ozone-induced fade spans a range of about 25X from best to
worst. With respect to ozone fade, it is interesting to note
that the pigmented inkjet system (F), (which is the best
with respect to light fade), is in the middle of the pack.

Heat and Humidity
Heat and humidity can affect prints that are on display

as well as those that are in storage. In contrast to the effects
of light and ozone, which primarily result in dye fade and
density loss, prolonged exposure to high heat and humidity
can result in density gain and/or loss of sharpness in addition
to dye fade.2 Under condition (d), which stresses the
humidity sensitivity of the test samples, the EP systems (H,
I) are among the least affected by humidity, along with the
TDT and IJ-PP systems (F, G). Each of the dye-based inkjet
systems (A-E) exhibits higher amounts of density change,
with systems B-E all showing a gain in density. This is
believed to be the result of dye migration, which, in turn,
leads to greater area coverage and an apparent increase in
density.2,3 The rate of change for systems D, C, and E
follows first-order kinetics, consistent with dye diffusion,
with most of the change occurring within the first seven
days of treatment.

Although not evident from the data in Table 4, the two
IJ-DP systems (A, D) exhibit competition between dye
migration and dye fade. All three primary colors exhibit a
rapid increase in density followed by a gradual decrease in
density over time. Because the samples were treated in a free-
hanging mode, and ozone was not specifically excluded from
the test chamber, the observed dye fade can be due to trace
levels of ambient ozone present in the test chamber
environment.5 It is known that the rate of ozone-induced fade
for inkjet prints can be accelerated at higher levels of
humidity.6

In contrast, condition (e), which emphasizes temperature
over humidity, much less change overall is observed. Under
this condition, all samples exhibit some density loss, with
most systems losing less than about 0.06 density units.
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Two of the IJ-DS systems (B, E) are among the best 
performers, along with the EP systems (H, I). The IJ-PP 
system (F), the TDT system (G), and the other IJ-DS system 
(C) are in the middle of the pack, with the two IJ-DP 
systems (A, D) ranking at the bottom.  

Summary  

No one system, or technology, performs the best against all 
of the factors investigated for this study. Although the IJ-DS 
and IJ-PP systems exhibit superior light fade resistance, 
they suffer from weaker ozone resistance (C, F) and/or 
greater humidity sensitivity (B, C, E).  

The EP systems are among the best for ozone, 
humidity, and temperature sensitivity, but are only fair with 
respect to light fade. It should also be noted, however, that 
the photographic “look and feel” of the desktop EP systems 
included in this study suffer when compared to the other 
systems and traditional silver halide photographs. Higher 
end digital EP systems may come closer to matching the 
end-users expectations for quality photographic output.  

The thermal dye-transfer system (G), although not the 
best against any of the test conditions, is in the top five 
across the board, a distinction shared by no other system. 
The IJ-DP (A, D) systems rank consistently in the bottom 
half in each case.  
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