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Abstract 

The electrical conductivity of a two component conductive 
developer decreases with increasing toner concentration, 
since the insulative toner particles block carrier-to-carrier 
contacts. This effect is a function of toner and carrier 
physical properties such as size, density and the intrinsic 
conductivity of the carrier particles. However, this effect 
can be moderated through additional factors such as carrier 
surface roughness and lubricating toner external additives. 
In the present paper, these various effects will be illustrated, 
using an analysis of experimental conductivity data taken on 
three sizes of model toners. 

Introduction 

In a conductive magnetic brush (CMB) developer, the 
conductive carrier particles provide electrically conductive 
pathways through the brush. As a result, the development 
field is confined to the tips of the carrier chains, and toner 
particles in this region are therefore efficiently driven to the 
latent electrostatic image.1,2 The CMB mode of 
development, therefore, is well suited for development 
applications that require a high level of development. 

However, while conductive carrier particles are a 
necessary component of a CMB developer, other developer 
components can strongly affect the overall conductive 
performance. For example, since toner particles are 
insulative, the conductivity of a toned CMB developer will 
always be lower than that of the conductive carrier particles. 
For many CMB developers, the developer conductivity, •C, 
at any toner concentration, C, can be related to the untoned 
carrier conductivity, σo, by: 

σC = σo.exp{-αC}      (1) 

where the α factor is a measure of the sensitivity of σC to the 
toner concentration, and this factor can be related to carrier 
and toner physical properties such as size, shape, density 
and surface chemistry.3,4 

To minimize the sensitivity of developer conductivity 
to toner concentration, the α factor must be small. This is 
especially important as a function of developer age, where 
toner impaction onto the surface of the carrier beads may 
produce only a minor change in so but a major change in the 
α term.5,6 

In this present report, experimental data on the effect of 
toner and carrier physical properties on α will be presented, 
with especial reference to toner size, carrier roughness and 
external toner additives. 

Experimental 

(a) Materials 
Carrier: A nominal 100 micron diameter steel grit core, 
solution-coated with a PMMA/conductive carbon black 
lacquer. 
 
Toner: A single model toner design at three sizes — 13, 9 
and 7 micron volume median diameters, at a 5 micron 
cutpoint. These base toners were also examined after the 
combined addition of 0.3 wt% of R972 fumed silica and 0.3 
wt% of zinc stearate as external additives. Toner 
concentrations were prepared from 0.5 to 4 wt %. 

(b) Test Procedures 
Triboelectric Charge: The toner charge to mass ratio, q/m, 
and the toner concentration ,C, values were measured using 
a total blow-off Faraday cage. 
 
Developer Conductivity: A miniature magnetic roll 
assembly was used to create a trimmed magnetic brush from 
the developer samples,3,4,7 with a gap of 2.54 mm between 
the roll surface and a guarded current measurement 
electrode (3 cm2 in area, 0.5cm wide by 6 cm long). At an 
applied potential of 10 volts, d.c. to the developer roll, the 
conduction current ,I, was measured with an electrometer 
connected to the guarded electrode, yielding conductivity 
values σ defined as: 

σ = (I/10)·(0.254/3) (ohm.cm)-1    (2) 

Carrier Packed Density: Electrical conduction through a 
magnetic brush involves many carrier-to-carrier contacts 
along the bristles formed by the carrier beads, so that the 
conduction process will be strongly influenced by the 
physical state of the brush. For conductivity, external 
controlling factors include the strength of the applied 
magnetic field8 and the degree of brush compaction 
(“trimming”), and (for a fixed brush configuration) these 
affect the packed density of the carrier beads in the brush.9 
Unfortunately, it is difficult to make an accurate 
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measurement of packed density directly from a magnetic 
brush , so an indirect surrogate test was used for the present 
tests. Density measurements on untoned carrier beads in a 
uniform magnetic field have been reported,9 but for the 
present study packed density measurements were made 
using a conventional tapped density procedure2,10-12 on 
samples held in a cylindrical volume cell. 

Since the conduction through a magnetic brush 
proceeds through the chained carrier beads, then conduction 
will be related to the packed density of the carrier beads in 
the developer rather than to the packed density of the 
developer itself. Therefore, measurements of the latter 
density must be converted to an effective carrier density as 
follows: 

ρ
carrier = Mcarrier/V      (3) 

i.e., 
)100/1()/( CVMdevelopercarrier +÷=ρ   (4) 

where ρcarrier is the tapped density of the carrier beads in the 
toned state, Mcarrier is the mass of carrier in the mass of 
developer Mdeveloper that fills a calibrated volume V at a toner 
concentration of C wt %. From ρcarrier, the carrier packing 
fraction f can be calculated using: 

f = ρcarrier/ρbulk           (5) 

where ρbulk is the mass density of the carrier beads as 
measured by liquid displacement, using isopropyl alcohol 
(ρbulk = 7.55 g/cc, and ρcarrier = 3.60g/cc for the untoned test 
carrier beads). 

Results and Discussion 

Figures 1 and 2, the developer conductivity vs. toner 
concentration data for the base and external additive toners, 
respectively, show that the developer conductivity:toner 
concentration response increases as toner size decreases, 
with the base toner developers showing the largest response. 

The carrier packed density data vs. toner concentration, 
Figures 3 and 4, show a similar base toner to additive toner 
response, but in contrast to the conductivity data, the 
density response is lowest for the “small toner/external 
additive” sample. 

If toner particles merely sit in the spaces between 
carrier particles, then the carrier packed density will remain 
constant over a range of toner concentration, and a 
conductive developer based on a stearated toner and a 
smooth, round ferrite carrier is an example of a developer 
that approaches this limiting condition.3,13 However, in 
general, triboelectrically-charged toner particles will be 
distributed over the entire carrier surface and will thus act as 
insulative spacers between the carrier particles. For such a 
case, the effect of toner particles on a carrier packing 
fraction, fC, at any toner concentration, C, will follow a 
relationship of the form14 

f
C = (fo – fmono).exp{-k.C} + fmono    (6) 

where fo and fmono are the respective carrier density values for 
untoned carrier and carrier coated with a monolayer of toner 

particles. For the present toner/carrier combinations, all of 
the packing density data follow the form of Equation (6), 
with a predicted limiting reduction in packing density of 15-
20% (compared with model limits14 of 20-30%). At any 
fixed toner size, a noteworthy difference between the base 
and additive toner data is in the fo value — in the presence 
of the additive toners, the un-toned carrier packed density is 
increased by 2%. 

 
Figure 1. Developer conductivity vs. toner concentration for 7,9 
and 13 micron additive-free base toners with 100 micron carrier. 

 
Figure 2. Developer conductivity vs. toner concentration for 7,9 
and 13 micron additive toners with 100 micron carrier. 
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Figure 3. Toned carrier packing fraction vs. toner concentration 
for 7,9 and 13 micron additive-free base toners with 100 micron 
carrier. 

 

Figure 4. Toned carrier packing fraction vs. toner concentration 
for 7,9 and 13 micron additive toners with 100 micron carrier. 

 
Since electrical conduction through a toned two com-

ponent developer follows a percolation pathway between 
contacting carrier beads, the developer conductivity will be 
a function of processes that affect the probability for carrier-
to-carrier contacts. For fixed brush conditions (e.g., fixed 
magnetic field, fixed degree of brush compression), Figures 

1 and 2 indicate that the concentration of toner particles in 
the developer is an important conductivity lim-iting factor. 
For the present test materials, developer conductivity should 
be related to the carrier packing densi-ty (in the presence of 
toner particles), since Figures 3 and 4 indicate that toner 
particles increase the carrier-to-carrier spacing. Indeed, 
plots of developer conductivity vs. carrier packing fraction, 
Figures 5 and 6, show a strong relation-ship, and the plots 
can be described parametrically by: 

σC = σmax.exp{-B.(exp{-β.(fc – fins)})}    (7) 

where σC is the developer conductivity at a toned carrier 
packing fraction of fc, σmax is the limiting, maximum detoned 
carrier conductivity, B and β are constants, and fins is the 
packing fraction at which the developer becomes totally 
insulative (with insulative defined as10-16 ohm.cm-1, then B 
is loge{σmax/10-16}). 

Equations 6 and 7 can be combined to give a somewhat 
non-linear equation relating developer conductivity to toner 
concentration, and the trend lines in Figures 1 and 2 were 
generated from combinations of the fits to the data in 
Figures 3-6. 

To further explore the toner size effects that are evident 
in the experimental data of the present study, it is 
convenient to review the data in terms of the simple 
relationship given in Equation (1). In this equation, the α 
term (for toner concentration expressed in wt %) can be 
related to carrier and toner physical properties by: 

α = (1/100).( ρcR
3.(r – δ))/(ρt. r

3.(R+r))   (8) 

where ρc and ρt are the carrier and toner bulk densities, R 
and r are the carrier and toner radii values and δ is the depth 
of the roughness depressions on the carrier surface. 
 

 
Figure 5. Developer conductivity vs. toned carrier packing 
fraction for 7,9 and 13 micron additive-free base toners with 100 
micron carrier. 
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Figure 6. Developer conductivity vs. toned carrier packing 
fraction for 7,9 and 13 micron additive toners with 100 micron 
carrier. 

 

Figure 7. Predicted alpha vs. toner diameter for 100 micron 
carriers with smooth and rough surfaces (δ = 0 to 4 micron). The 
data points are from tests on 7,9 and 13 µ additive-free toners. 

 
Figure 7 shows the relationship between α and toner 

diameter, as predicted from Equation (8) for values of δ 
from 0 to 4 micron , based on ρc =7.55 g/cc , ρt = 1.10 g/cc 
and R = 50 micron. The data points in Figure 7 are from the 
additive-free base toner tests, and a comparison with the 

model predictions indicates a δ value of about 1 micron for 
the test carrier. 

Figure 8 shows the experimental α:C data and 
predictions for the external additive test toners paired with 
the same carrier as examined in Figure 7. In Figure 8, it was 
necessary to scale the predicted α values by a factor of 0.57 
in order to match the predicted and experimental α values 
for a δ value of 1 micron. Since α is a measure of the ability 
of toner particles to block carrier-to-carrier contacts, it 
appears (from the reduction factor of 0.57) that the 
relationship between toner concentration and contact 
blocking is reduced for the case of the stearated test toners. 
Apparently, lubrication between the carrier surface and the 
stearated toner facilitates the movement of the toner 
particles away from the critical carrier-to-carrier contact 
zones, thus producing a denser (and more conductive) 
carrier matrix. (This lubricating effect is not simply limited 
to the toner particles — after contact with a stearated toner, 
carrier beads acquire a stearate film15, and this produces an 
increased packed density for the carrier beads, even after all 
of the toner has been removed). 

 

 

Figure 8. Predicted alpha vs. toner diameter for 100 micron 
carriers with smooth and rough surfaces (δ = 0 to 4 micron). The 
data points are from tests on 7,9 and 13 µ additive toners. 

 
 
With respect to toner size effects, Figures 3 and 4 show 

that small toner also promotes a denser carrier matrix, but 
this effect is offset by a higher value for the carrier packing 
fraction at which the developer becomes insulative (the fins 
term) — see Figures 5 and 6. As toner size decreases, the 
conductive-to-insulative transition will occur at carrier 
packing fraction values approaching that of the untoned 
carrier beads, and the developer conductivity will become 
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extremely sensitive to small changes in the carrier packing 
fraction. 

Conclusions 

To reduce the sensitivity of developer conductivity to toner 
concentration, Equation (8) indicates that toner size and 
carrier surface roughness should be maximized, and that 
carrier size should be minimized. A reduction in carrier bulk 
density (e.g., from steel to ferrite) and an increase in toner 
density are also predicted to be effective for the reduction in 
α. However, while toner density can be readily increased by 
the addition of magnetite, this will not reduce α — for the 
magnetite case, the magnetic toner particles will accumulate 
in regions of maximum magnetic field flux, and since such 
regions will be concentrated at the carrier-to-carrier contact 
points, the overall effect will be an undesirable increase in 
α. 

Finally, the addition of lubricating external additives 
such as zinc stearate to a two component developer can 
reduce the sensitivity of developer conductivity to other 
toner and carrier properties (such as density, size, etc.) by 
promoting carrier packing and hence carrier-to-carrier 
contacts. Since Equation8 predicts that α will be an inverse 
function of toner size cubed, a combination of increased 
carrier roughness, reduced carrier size and density plus 
stearated toners will be necessary to produce low values of 
α for developers based on small toners. 
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