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Abstract  

A series of novel copolymers having components with hole 
transport and silane functionality have been synthesized. 
These copolymers were prepared by radical polymerization. 
Through a sol-gel process with methyltrimethoxysilane, 
solutions of the copolymers with were coated to form the 
hole transport layer of an organic photoreceptor. These hole 
transport active silsesquioxane layers were coated as either a 
charge transport layer (CTL) on a charge generation layer 
(CGL) or a protective overcoat on a CTL. The 
electrophotographic properties of photoreceptors prepared 
with these sol-gel layers were described.  

Introduction 

In the electrophotographic process the photoreceptor is 
charged and image-wise exposed. The charge transport 
layer (CTL) in most organic photoreceptors is a polymer 
molecularly doped (40-50% by weight) with a charge 
transport material. In the electrophotographic process this 
surface is subjected to a variety of physical and chemical 
abuses and is easily damaged. Extensive efforts have been 
devoted to the stabilization of photoreceptors to such abuse. 
One approach has been to "toughen" the CTL by selective 
doping, choice of binder polymer, use of a hole-transport 
active polymer, etc. Another approach is the addition of an 
overcoat layer.1-4 

Overcoats must bind well to the underlying 
photoreceptor materials, be flexible and resist cracking in 
the electrophotographic process, and transport charge. 
Overcoats of silsesquioxane polymers have been utilized as 
abrasion resistant overcoats,5,6 including overcoats for 
organic photoreceptors. Such organic silicone overcoats are 
normally prepared by the sol-gel process.7,8 Silsesquioxane 
overcoats for organic photoreceptors are disclosed in many 
patents and in the open literature.7-11 The protection of 
organic photoconductors using an overcoat comprising 
various polysiloxane mixtures in a polycarbonate resin has 
also been reported.12 

The incorporation of charge transport materials 
(CTMs), such as tertiary arylamines, into silsesquioxane 
polymers for the purpose of transporting holes has been 
detailed in a series of patents.13-15 These patents employ a 

silane that has been covalently bonded to a phenyl ring of a 
tertiary amine through a non-hydrolyzable Si-C bond. Other 
synthetic pathways used are to prepare triarylamines with 
trialkoxysilane moieties attached through a Si-C bond.16 The 
resulting trialkoxysilyl-substituted triarylamines are coated 
as protective overcoats containing commercially available 
silicone hard coat materials. Recent articles in the chemical 
literature have compared sol-gel networks, including 
silsesquioxanes, that have useful moieties such as organic 
dyes attached to the siloxane network through non-
hydrolyzable Si-C bonds and the equilibrium control 
addition through Si-O-C. For example, Bellmann et al. 
reported the incorporation of the functional moieties such as 
fluorinated tertiary arylamines and trimethoxyvinylsilane 
into polymer chains.17 However, due to the low reactivity of 
trimethoxyvinylsilane in radical polymerization, the 
percentage of the silane moieties in the copolymers was 
limited. Schneider et al. claimed that high quantities of 
perylenes could be incorporated into sol-gel networks by 
first coupling the dye to the silane and then forming the 
network.18 Alternatively, a dye can be incorporated in the 
sol-gel formation process as well.19-22  

In this paper, we report the design and application of 
novel silsesquioxane materials as hole transporting layers in 
organic photoreceptors. In our approach a copolymer is 
prepared with one monomer having a hole transport 
functionality and the other having a hydrolyzable alkoxy 
silane functionality. The former provides hole transport 
characteristics and the latter a site for cross-linking in the 
formation of a silsesquioxane network. 

Experimental 

A. Synthesis of charge transport monomer, di(p-
tolyl)amino styrene (DTAS) 

The purified product was obtained as a white crystal 
solid from above procedure. Melting point: 69-71 °C. 
Elemental analysis: C: 88.67; H: 7.10; N: 4.63 
(theoretically: C: 88.25; H: 7.07; N: 4.68). 

The other monomer, methacryloxypropyl trimethoxy-
silane (MATMS), was obtained from Aldrich Chemical and 
used as received. 
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B. Synthesis and Characterization of Organic 
Transporting Copolymers 
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Under an Argon atmosphere, the silane and charge 

transporting monomer mixture with predetermined molar 
ratio was dissolved in anhydrous toluene. The radical 
initiator then added to the solution. After the solution was 
heated to 60 °C-100 °C for 20 hours, the contents were 
cooled to room temperature and precipitated into methanol. 
The polymer was collected by filtration, washed with 
hexane several times, and dried under vacuum overnight.  

C. Sol-gel Solution Preparation  
The sol-gel solutions were prepared by the acidic 

hydrolysis and condensation of the copolymers with 
methyltrimethoxysilane (MTMS) as shown.9 
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R represents either an alkyl group or an alkylene group 
from the repeat unit of the transporting copolymers.  

For comparison, a sol-gel solution without transporting 
copolymer was prepared with only methyltrimethoxysilane.  

D. Coating of Sol-Gel Solution on the Photoreceptor 
Substrates 

Two substrates, A and B, were used for the sol-gel 
overcoats. Substrate B is a CGL (0.5 micron) of a near-
infrared sensitive pigment in a polymeric binder. Substrate 
A is the same CGL with a 2 micron conventional CTL. Both 
were on a poly(ethylene terephthalate) (7 mil) substrate with 
a conducting Ni layer. 

E. Electrophotographic Characterizations  
Low intensity continuous exposure was used to 

evaluate the electrophotographic characteristics. This was 
carried out by charging the photoreceptor sample to -100 V 
surface potential and then exposing through a "transparent" 
surface reading voltmeter probe. The surface potential was 
monitored continuously before and during the 
photodischarge. The residual voltages were determined after 
a 15 sec exposure (10 erg/cm2s, 775 nm). 

Results and Discussion 

The copolymers containing both silane and charge transport 
groups were synthesized through radical polymerization. A 
1H NMR spectrum of poly(DTAS-MATMS) is shown in 
Figure 1. There are no impurity peaks, such as those from 
residual monomers and solvents, in the spectrum. The 
relative ratio of the triphenyl amine and silane functional 
groups in the polymer chains was calculated based on the 
peak integration in aromatic region of 6.5-7.5 ppm and all 
other peaks below 5.0 ppm.  
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Figure 1. 1H NMR spectrum of poly(DTAS-MATMS) 

Table 1. Copolymerization of DTAS and MATMS. 
# feed ratio  A/B* in Tg  Mn Mw E0

ox  

 A/B* (mol %) polymer (mol %) ( °C)   (V) 

P1 5/95 6.1/93.9 -22.4 22200 49000 - 

P2 10/90 12.1/87.9 -18.0 22700 63000 - 

P3 25/75 37.3/62.7 51.4 23600 41700 - 

P4 50/50 59.8/40.2 79.3 23500 40200 0.960 

P5 75/25 79.5/20.5 110.3 28800 101000 0.960 

*: Monomer A: DTAS; Monomer B: MATMS 
 
The copolymerization results of poly(DTAS-MATMS) 

with different comonomer ratios are shown in Table 1. The 
data indicate that the reactivity of DTAS is slightly higher 
than MATMS. Due to the relatively bulky structure of 
DTAS, which limits the chain movement, the greater the 
percentage of DTAS in the polymer, the higher the glass 
transition. The oxidation potential of the poly(DTAS-
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MATMS), 0.96 V, is suitable for the electrophotographic 
CTL application. 

Table 2 lists the photoreceptors, the sol-gel 
characteristics, and the residual potential. With either 
substrate the higher the content of charge transporting 
monomer in the sol-gel coating the lower the residual 
potential (Vres).  

Table 2. photoreceptor films from sol-gel process and the 
sensitometric properties. 

sample substrate CTM CTM CTM % sol-gel Vres 

   / MTMS 
Ratio (wt) 

in sol-gel 
(wt %) 

thickness 
(µm) 

(V) 

Control 1* A N/A N/A N/A 0 0 

Control 2 A N/A 0:1 0.0 1.8 50 

A1 A P1 1:1 3.7 1.2 27 

A2 A P4 1:1 32.1 1.6 7 

A3 A P4 3:1 48.1 1.8 2 

Control 3 B N/A 0:1 0.0 1.4 100 

B1 B P2 1:1 7.1 1.2 40 

B2 B P4 1:1 32.1 2.8 8 

B3 B P4 3:1 48.1 1.8 1 

*: Control 1 is the Substrate A without any overcoat. 
 

 
As shown, photoreceptors with sol-gel coats of 

copolymer P4 on CTL or CGL substrates exhibited almost 
100% photodischarge relative to the photoreceptor of 
Control 1 (no overcoat) and a sol-gel overcoat with only 
MTMS but no charge transport material (Control 3) 
exhibited no photodischarge.  

Conclusion 

This study has demonstrated that the copolymerization of 
charge transport and silane monomers and the incorporation 
of this copolymer into a novel silsesquioxane matrix 
provides a hole transporting material which can be utilized 
as a CTL or as a protective overcoat on a dual layer 
photoreceptor.  
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