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Abstract 

The Hosokawa powder tester has been used for years to 
determine cohesion of bulk powders, including toner. For 
the first time a method is demonstrated to measure cohesive 
force distributions, rather than just average values, using the 
Hosokawa tester. The method is demonstrated for toner, 
varying surface additive composition and loading. Force 
distributions are shown to be generally log-normal. Both the 
mean and width of the distributions generally decrease with 
increased surface additive loading. Thus, better flow with 
additives decreases peak cohesion and distribution width.  

Introduction 

Surface oxide particles control xerographic toner flow, 
charge1-5,6 and transfer.7 While there are many methods to 
measure flow of powder, including toner,8 all give only an 
average value. This paper shows a novel Hosokawa tester 
method that measures particle cohesive force distributions.  

Experimental 

 Cohesion was measured on a Hosokawa Micron Powder 
tester, with an added vibration sensor6 (300 mV output per 
mm vibration). A standard Hosokawa test places a 2 g 
sample on nested screens of varying size (150, 75, 45 µm) 
at fixed vibration, usually 1 mm, for 90 s, giving: 

               % cohesion = 50•A + 30•B + 10•C            (1) 

A, B and C are toner weights left on each screen, 
respectively. The weighting factor in Eq 1 increases with 
screen size: toner left on a larger screen contributes more. 
Cohesion for most toners here was too low to be measured. 

The new method uses only one screen, testing 
sequential 10 g samples at 6 different vibrations, from 1/10 
to 1 mm for 90 s, weighing toner remaining on the screen. 

Base spherical toner particles9 were blended with 
additives at 16 Krpm on a sample mill.  

Results and Discussion 

Powder Cohesion and Inter-particle Forces 
Experimental toner cohesion data can be explained if 

inter-particle forces are linear with % Hosokawa cohesion.6 
Briefly, toner is an ensemble of agglomerated particles 
whose cohesion follows a log-normal distribution (Eq 2 and 
Fig 1a). NF is the number of particles experiencing an inter-
particle cohesive force F, while No, is the total number of 
particles, and σ  is the geometric standard deviation. 
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Figure 1. Log cohesion distribution:  a) number b) cumulative. 
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Fig 1a shows log-normal distribution for samples c 
and d with different peak cohesion, but equal distribution 
widths. Fig 1b is the cumulative log normal distribution, the 
integral of Fig 1a. Also shown is the applied vibration force, 
Fvib. Particles of cohesion <Fvib (to the left in the Figure) pass 
through the screen, those >Fvib will remain. If c is replaced 
by the less cohesive d, more toner passes (the Fvib line 
“moves” from A to B on the distribution curve in Fig 1b). If 
the vibration is decreased for c, less toner passes (Fvib 
“moves” along the distribution curve from A to D). 

Hosokawa % cohesion then has an associated Fvib that is 
approximately linear with the cohesion force, as shown by 
the fitted line in Fig 1b. The linear fit is a good, with ±1-2 
σ  from the peak. Only if the applied force goes into the 
distribution tails, does the test become insensitive.  

To keep the Hosokawa in the linear range over a range 
of cohesion force, Carr10 uses different size screens. It is 
observed that a small screen requires a larger force 
(vibration) to pass toner than a large screen. If all the toner 
passes the largest screen, a smaller screen below still can 
partitions toner linearly. By proper choice of screen sizes 
and weighting factors the linear range can be maximized.  

To produce a cohesive force distribution like Figure 1a, 
data is plotted as the natural log of Fvib (Eq 2.) Data is 
collected in discrete intervals. The x-axis will plot the 
natural log of the vibration on an interval. Vibration was left 
in the measured mV. (Neither mm, nor mV, are force units, 
the maximum vibration force applied, according to basic 
physics, is proportional to vibration amplitude.) The y-axis 
will then transform the data as ∆w/∆ln(vi+1 - vi), where vi is 
the vibration at data point i, and ∆w = (wi+1-wi), is the toner 
passed over the interval. Completing the y-axis 
transformation, the data is normalized by dividing ∆w by 
Σ∆w, the total over all the toner that passes. This is 
necessary to ensure that the curve areas normalize to 1. The 
y-axis is thus transformed to a fractional population, which 
enables observed curves to be fitted directly by Eq 2. 

 A suitable screen size was chosen to measure the full 
cohesive distribution within the vibration range. For poorly 
flowing toner, without flow additive, this was not possible. 
With additives, all toners had sufficient flow to enable full 
measurement of the force distribution. 
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Figure 2. Cohesion distribution with 1 wt% TS530 

Figure 2 shows data for a toner with 1 wt% Cabot 
TS530 silica on a 38 µm screen, capturing the full force 
distribution. The fit to a log-normal distribution is 
outstanding: only the width, σ, and mean, µ, of the 
distribution are adjustable parameters. Generally, with all 
three surface additives studied, there was a good fit to a log-
normal distribution. Data at two larger screen sizes is not 
shown:  while force distributions are cut off with these 
screens it is possible to estimate a peak and width.  

Figure 3 shows the effect of screen size on distribution 
mean and width, showing a 1/(screen size) fit to the mean, 
and a linear fit to the width. Increased screen size passes 
more toner, as expected. Thus, smaller screens enable the 
measurement of toners with wider cohesion distributions. 
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Figure 3. Effect of screen size on the force distribution. 
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Figure 4. Cohesive force distribution at 0.5 wt% TS530 

 
Figure 4 shows lower 0.5% TS530. The distribution is 

log-normal, shifted to a higher mean and width. Fig 5 
summarizes results for 0%, 0.5% and 1% TS530. As 
expected, more TS530 reduces peak cohesion. Broadening 
at low silica is ascribed to inhomogeneous additive 
distribution: some toner has more silica (flowing better) and 
some less (flowing worse).  At optimal loading all toners are 
effectively coated with silica, and all flow well. 
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Figure 5. Force distributions (fitted curves) with % TS530. 
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Figure 6. Peak cohesive force with additive loading. 
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Figure 7. Cohesive distribution width with additive loading. 

 
Flow with two different titania additives, coded Titania 

A and B, was also studied. The data is not shown, but a 
summary for all additives is shown in Figs. 6 and 7. 

Figure 6 shows peak cohesion with additive loading. 
TS530 and Titania B show equivalent cohesion, reaching an 
asymptote of ≈80 mV at the highest 1% loading. Titania B 
is less effective: at 2.1% the asymptote is ≈120 mV, and 
thus requires over 2x more additive to reach optimal flow, 
still 50% worse than the other additives studied. 

 Figure 7 shows distribution widths with loading. Silica 
and Titania B decrease monotonically with loading. Titania 
A shows an initial increase in width, but an overall 
decrease. The initial width increase is likely due to an 
inhomogeneous distribution of additive, which improves at 
higher optimal loading.  

Conclusions 

A novel method has been developed that measures cohesive 
force distributions with a Hosokawa tester. The method was 
demonstrated for varying surface additive type and loading. 
Force distributions are log-normal. The mean cohesion 
decreases with increased additive loading. At optimal addi-
tive loading there is a concomitant decrease in distribution 
width. “Best” flow with additives is a combination of both 
reduced distribution peak and width.  
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