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Abstract 

The color image has various edge profiles. In the 
conventional single kernel sharpness filter has the 
drawbacks of exhausting background noises or insensitivity 
to the dull edges. In the previous paper,1 we proposed an 
adaptive image sharpening method to the edge profiles. This 
paper, reports its advanced model, which has both 
sharpening and smoothing functions. In addition, the paper 
assesses the edge sharpness factors by introducing the 
indices, such as ES (Edge Sharpness), FS (Spatial 
Frequency Sharpness), and Nf (Flat Area Noise). The 
improved model makes the flat area noises intentionally 
smoothed with preserving the enhanced edges. A pre-
scanning spatial filter generates the edge map to classify the 
edge types into hard, medium, soft, and flat zones. The 
multiple GD (Gaussian Derivative) operators with different 
deviations are selectively applied to the corresponding edge 
zones by looking up the edge map. Here the smoothing 
filters are applied only to the flat zones to reduce the 
background noises. In comparison with the single kernel 
filter method, the proposed model worked excellent to 
sharpen the different edge slopes naturally together with 
dramatically reducing the background noises. 

Introduction 
The color image has different edge profiles depending 

on the characteristics of the objects placed in the scene. In 
the conventional edge enhancement methods, such as 
Laplacian or unsharp masking, a single filter is applied to 
the entire image. The non-adaptive single sharpness filter is 
known to have the following drawbacks such as 

[1] Background noises in flat area are amplified with 
edge enhancement. 

[2] Dull edges are not well sharpened by a fixed single 
filter  

 In the unsharp masking approach, a fraction of the 
high-pass filtered version of the image is added to the 
original image. It is simple, but enhances the noise and/or 
digitization effects resulting in visually unpleasant image. 
While the noise can be suppressed with low-pass filters 
associated with the blurring of the edges. Ramponi et al 
proposed a nonlinear unsharp masking method2, which 
combines the features of both high-pass and low-pass filters. 
Inoue and Tajima reported an adaptive image sharpening 

method,3 which estimates the edge sharpness by high band-
pass filter based on DOG function. 

However, these methods don’t suppress the flat area 
noises sufficiently. Also, the conventional Laplacian filters 
don’t create the natural sharpness, because they have local 
edge responses different from the receptive field in human 
vision. 

In the proposed method, multiple edge enhancement 
filters are applied to work adaptive to the different edge 
slopes and to work intentionally smoothing the background 
noises in the flat areas avoiding the enhancement.  

Edge Sharpening Operator 
A variety of simple cell receptive field models for 

human vision have been considered such as GD (Gaussian 
Derivative), Gabor, DOG, DOOG, DODOG, and so on.  

Stork and Wilson, Yang, and Klein et al, disputed 
which one, Gaussian derivative (GD) or Gabor4 could 
minimize the joint space-spatial frequency uncertainty 
∆x∆ω. Young5 and others reported the GD is better than 
Gabor. Marr and Hildreth6 applied GD to detect zero-
crossing edges.  

Here we also applied GD-based operators.  
The basic Gaussian distribution function in two 

dimensions is defined by 
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Its second derivative is given by  
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Figure 1 shows the 3D shape of GD spatial filter and its 
cross sectional view. 

The effective field spreads to σ4r2 ±≅ from center. 
Hence M≅8σ+1 will be sufficient to reflect the receptive 
field. For example, 7×7(σ=0.7) ∼ 13×13(σ=1.5) matrices 
may be applied to describe the GD filters. 

The edge signals are extracted from image f(x, y) by 
the two-dimensional convolution operation as follows. 

( ) ( ) ( )y,xfy,xGy,x ⊗−= 2∇δ    (3) 
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Where, symbol ⊗ denotes the convolution operation 
and the edge sharpness is measured by operating the pre-
scan filter -∇2GS with appropriate sharp standard deviation 
σS.. 
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Figure 1. GD operator based on human visual field response 

Multi-Scale Filtering by Edge Segmentation 
Figure 2 illustrates the sharpening process in the 

proposed system. First, the RGB image is transformed into 
luminance -chrominance image such as YCrCb or YIQ. The 
edge enhancement is applied only to the luminance Y image 
to keep the gray balance on the edges. The edge strengths 
are analyzed by the histogram of δ(x, y) by a pre-scanning 
sharp GD filter and classified into multiple zones reflecting 
the edge profiles, such as, hard, medium, soft, and flat. 
Thus the edge map is generated to discriminate these edge 
types. The multi-scale Gaussian derivative operators -∇2G 
with different σ1, σ2 and σ3 are selectively applied to Y 
image by looking up the edge map. 

Thus, the luminance Y image is sharpened by adding 
this edge adaptive GD signal δ(x, y) to image f(x, y) as 
follows. 

f’(x, y)=f(x, y)+ δ(x, y)    (4) 

Finally, the original Y image is replaced by sharpened 
luminance image Y’ and converted into R’G’B’ primary 
color image by inverse transform. 

Experimental Results 
Figure 3 shows an example of sharpened images by the 

proposed adaptive method in comparison with non-adaptive 
single kernel method in the close-up views: 

As clearly viewed, the flat area noises are enhanced 
together with the edges in the conventional method, but are 
dramatically reduced in our method. Watching carefully, the 
proposed method provides with better background than the 
original by noise reduction smoothing filter and natural 
sharpening effects adaptive to the edge slopes in the image. 
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Figure 2. Multi-scale adaptive image sharpening process. 
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Figure 4 illustrates a comparison in the sharpened edge 
profiles along the scan line. The edge map shows the 
corresponding three edge types classified by the red, green, 
blue, and black colors representing the hard, medium, soft 
edge zones, and flat areas respectively. While, the lower 
figure shows how the proposed multi-scale GD filters work 
adaptive to the edge slopes. As clearly shown in these 
profiles, the proposed method has both the sharpening and 
smoothing effects. The red line is smoother than the original 
in the most left and right sides of the scan line, but well 
responding to the edge slopes in middle parts. On the 
contrary, the dotted line by causes the unwanted 
enhancement of background small noise in the flat area.  

Fig.5 shows another comparison in the sharpened 
images. In this sample, the non-adaptive method used a 
single GD filter with σ=0.6 designed to response to the 
sharp edges, while the proposed adaptive method applied 
the same GD filter with σ=0.6 for pre-scanning and used 
three types of GD filters with σ=0.6, 0.7, and 0.8 for hard, 
medium and soft edges. The normal Gaussian smoothing 
filter with σ=1.0 was applied to the flat area. The center 
house with triangle roof in original image (a) includes sharp 
edges, while the next building to the right has smooth wall 
as shown in the edge map image (b). In the close up image 
(c) sharpened by the single GD filter, the wall area of right 
building looks too much rugged or uneven due to the non-
adaptive enhancement. On the contrary, the proposed 
method reproduced the wall area of right building very 
smoothly while sharpening the center house as shown in the 
close up (d). The smoothing filter in the proposed adaptive 
method dramatically improved the image quality in the flat 
areas as compared with non-adaptive method.  

 

 

(a)original         (b)conventional        (c)proposed  

Figure 3. Comparison of sharpening effects in close up 

Sharpness Factor 
To estimate the sharpening effects, any sharpness index 

is necessary. Inoue and Tajima introduced the edge 
sharpness index ES to measure the strength of edge 
components after sharpening by  
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Figure 4. Comparison of edge profiles along the scan line 

 

(c) conventional (d) proposed 

(a) original (b) edge map 

 

Figure 5. Comparison of sharpening effects  

 

Edge Sharpness: ES 
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ES is an effective index to measure the enhanced edge 
components existing in the edge areas. 

In addition, we newly introduced the following indices 
to assess the sharpened image quality taking the other visual 
factors into consideration. 
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Frequency Sharpness: FS  
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FS means the enhanced Fourier spectra after 
sharpening measured in 1-D diagonal spatial frequency f 
cycle/deg. 

( )fGorg  and, ( )fGsharp denote the Fourier spectra of 
original and sharpened images, and V(f) means visual 
transfer function in spatial frequency domain. 
Mean Square Error: MSE 

( ) ( ){ } dxdyy,xgy,xgMSE orgsharp∫∫ −= 2   (7) 

MSE means well-known mean square error between 
the original and the sharpened images. 
Noise in flat area: Nf 

( ) ( ) ( ){ }
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Nf reflects the noise power in the flat areas except edge 
areas and signifies very important quality assessment 
measure.  

(a ) S harp nes s A sse ssm en t :  im ag e=bride

0

0.1

0.2

0.3

0.4

0.5

E S FS MS E N f

S in gle /0 .6 S in gle /0.7 Mul ti -propos ed

(a ) S harp nes s A sse ssm en t :  im ag e=bride

0

0.1

0.2

0.3

0.4

0.5

E S FS MS E N f
0

0.1

0.2

0.3

0.4

0.5

E S FS MS E N f

S in gle /0 .6 S in gle /0.7 Mul ti -propos edS in gle /0 .6 S in gle /0.7 Mul ti -propos ed

 

(b) Sha rpnes s As sess m ent : im a ge= harbo r

0

0.2

0.4

0.6

0.8

ES FS MS E N f

S in gle /0 .6 S in gle /0.7 Mul ti -propos ed

(b) Sha rpnes s As sess m ent : im a ge= harbo r

0

0.2

0.4

0.6

0.8

ES FS MS E N f

S in gle /0 .6 S in gle /0.7 Mul ti -propos edS in gle /0 .6 S in gle /0.7 Mul ti -propos ed

 

Figure 6. Comparison of sharpness factors 

Figure 6 shows the measured sharpness factor for 
standard test images “bride” and “harbor” after sharpening. 
The result in the proposed method is compared with the 
single kernel filtering method processed by two different 
σ=0.6 and σ=0.7. The ES values by these two single kernel 
methods are larger than our method, because they works to 
enhance all the edge components in the image uniformly, 
while the proposed model operate the multiple filters, 
adaptive to the edge types not to enhance all the edges 
unnecessarily. On the other hand, as shown by the FS value, 
the proposed method behaves to lift up the spatial frequency 
components in the visible range as same as the single kernel 
method for the image “harbor” including much edge areas. 

Figure 7 illustrates a comparison of the flat area noise 
for typical standard test images. It is clear the noise powers 
are dramatically reduced in the proposed method. 
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Figure 7. Comparison of flat area noises 

 

Conclusions 

A multi-scale adaptive image sharpening method with noise 
smoother was proposed. Multiple Gaussian derivative filters 
resulted in natural image sharpening adaptive to the edge 
profiles and at the same time Gaussian smoothing filter 
applied to the flat areas reduced the background noises 
dramatically. The classification of edge strengths are based 
on the histogram of the edge signals dependent of the image 
contents. At present, the segmentation of edge types to 
make the edge map is determined empirically by 
referencing to the normalized standard deviation σ. The 
advanced way to generate the better edge map is under 
development. Future works on the subjective sharpness 
quality assessments are also under planning based on 
psychophysical experiments.  
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