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Abstract 

In color reproduction, the most troublesome moiré pattern is 
the second-order moiré, or the three-color moiré, usually 
produced by mixing of cyan, magenta and black halftone 
outputs. A classical 3-color zero-moiré solution is using 
three identical cluster halftone screens with different 
rotations: 15º, 45º and 75º, respectively. However, for most 
digital printing devices, the size and shape of halftone 
screens are constrained by the “digital grid”, which defines 
the locations of printed dots, and therefore, an exact 15º or 
75º rotation of a cluster screen is impossible. Although there 
are many alternative approaches for moiré-free color 
halftoning, most of them only provide approximate 
solutions and/or have a tendency to generate additional 
artifacts associated with halftone outputs. The difficulty to 
achieve moiré-free color halftoning is greatly relieved by 
using nonorthogonal halftone screens, i.e., screens in 
general parallelogram shapes. As a matter of fact, there exist 
many practical solutions by combining three simple 
nonorthogonal halftone screens. In this paper, a general 
condition for 3-color zero-moiré solutions is derived. A 
procedure using integer equations to search practical 
solutions for different applications is also described. 

Introduction 

Most halftone screens used in color reproduction are 
orthogonal screens, or screens in rectangular shapes, more 
likely in squares. Nonorthogonal screens refer to screens in 
general parallelogram shapes. In 1970, Holladay developed 
an efficient way of encoding the halftone screens.1 The 
method gives a unique halftone description with the 
advantages of simple implementation and a small memory 
requirement. The algorithm is based on geometry of general 
parallelograms; therefore, as explicitly pointed by Holladay, 
any nonorthogonal halftone screens can be produced and 
implemented by his method exactly as orthogonal screens. 
Obviously, orthogonal screens are only a small subset of the 
complete set of all nonorthogonal screens. However, using 
general nonorthogonal halftone screens had not shown any 
major advantage over orthogonal ones and, as a result, not 
much interest had been previously brought in the halftoning 
field.  

In a typical screening process, a halftone screen is 
applied repeatedly in a way similar to a tiling process 
indicated by the gray lines in Fig. 1.  

With any constant input, the halftone output by this 
halftone screen will be a two-dimensional spatial periodical 
function. From Fourier analysis, it is clear that the spectrum 
of the halftone output is composed of, and only of, the two 
fundamental frequencies and their higher-order harmonics 
from the Fourier transform of the halftone screen. There is 
no component with a frequency lower than the two 
fundamentals. For most of moiré analysis in halftone screen 
design, we may concentrate on fundamental frequencies of 
halftone screens, because the dominating moiré is most 
likely due to the interaction between fundamental 
frequencies of individual halftone screens for different color 
channels. First, let us consider a typical rotated orthogonal 
screen, as shown in Fig. 1. The geometry of this halftone 
screen can be specified by the dual representation of the 
Fourier transformation. In the spatial domain, the 
rectangular screen is specified by two orthogonal vectors, v1 
and v2, shown in Fig. 2; while in the Fourier transform 
domain, it is represented by two orthogonal frequency 
vectors, V1 and V2, shown in Fig. 3. As properties of the 
Fourier transformation, the two frequency vectors, V1 and 
V2, are perpendicular to the two spatial vectors, v1 and v2, 
respectively, and the moduli, or the absolute values, |V1| and 
|V2|, are equal to 1/|v2| and 1/|v1|, respectively.  
 

 

Figure 1. Digital grid with an orthogonal halftone screen outlined  
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Figure 2. Spatial vector representation of an orthogonal halftone 
screen 
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Figure 3. Frequency vector representation of an orthogonal 
halftone screen 

 
To eliminate or reduce moirés caused by interaction 

between different color channels, it is often critical to have 
precise rotation angles of halftone screens. For example, to 
avoid three-color moirés, traditional analog halftoning uses 
an identical dot screen for cyan, magenta and black 
channels with 15°, 75° and 45° rotation, respectively. 
Unfortunately, in digital halftoning, the selection of possible 
rotations for halftone screens is greatly restricted by a 
digital grid, or raster, defined by the location of physical 
pixels. The tangential of the rotation angle, specified by the 
argument of the spatial vector v, or the argument of the 
frequency vectors V, has to be a rational number, because 
the two Cartesian-coordinate components of a spatial vector 
v have to be integers. For example, a 45° rotation of a 
halftone screen, as shown in Fig. 1, may be achieved in 
digital halftoning, because tan(45°) = 1. However, neither 
15° nor 75° rotation of a halftone screen can be 
implemented digitally. Various digital halftoning methods 
have been proposed for precisely or approximately reaching 
certain desired rotation angles of halftone screens2-4. 
Perhaps, the most popular approach is the supercell, which 
is a rational tangent screen composed of many smaller 
subcells which are not uniform in size and shape3. The 
drawback of supercells is that a large halftone screen 
contains low fundamental frequencies. If the fundamentals 
or their spatial harmonics fall in the range of the sensitivity 
function of the human visual system, additional effort has to 
be made during screen design process to avoid possible 
low-frequency artifacts which might be shown in the 

halftone outputs. In general, designing a supercell is much 
more difficult than designing simple halftone screens with 
single or few centers. On the other hand, the selection of 
small orthogonal screens with different rotation angles is 
quite limited, especially for devices with relatively low 
resolutions, which makes almost impossible to find a moiré-
free solution using rotated simple orthogonal halftone 
screens for color halftoning.  

In this paper, we suggest using nonorthogonal screens 
for moiré-free color halftoning by searching integer 
equation solutions.5 In the following sections, a general 
analysis on nonorthogonal screens will be discussed, which 
will lead to a method for searching moiré-free solutions 
using simple nonorthogonal halftone screens.  

Dual Representation of Nonorthogonal Screens 

A general nonorthogonal halftone screens is outlined by the 
red lines in Fig. 4. The shape of this parallelogram screen 
can be specified by two vectors, v1(x1, y1) and v2(x2, y2), 
shown in Fig. 5. The two fundamental frequencies of the 
Fourier transform of this screen can be represented by two 
frequency vectors, V1(fx1, fy1) and V2(fx2, fy2), shown in Fig. 6. 
  

 

Figure 4. Digital grid with a nonorthogonal halftone screen 
outlined 
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Figure 5. Spatial vector representation of a nonorthogonal 
halftone screen 
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Figure 6. Frequency vector representation of a nonorthogonal 
halftone screen 

Similar to the orthogonal case, V1 and V2 are 
perpendicular to v1 and v2, respectively. However, the 
moduli of the frequency vectors |V1| and |V2| are not given 
by the reciprocals of |v2| and |v1|, as for the orthogonal 
screens. Instead, |V1| and |V2| are equal to the reciprocals of 
h1 and h2, which are the heights, or the pitches, shown by the 
dot lines in Fig. 5. Since the product, |v1|*h1 

•
=  |v2|*h2 

•
=  A, is 

the area of the specified parallelogram, we may write the 
moduli of the frequency vectors V1 and V2 as the following 
equations: 

A
1

1

v
V =

, (1a) 

A
2

2

v
V =

, (1b) 

where A is given by the absolute value of the cross product 
of two vectors, v•1 •

x  v2, i.e.,  

1221 yxyxA −= . (2) 

Since the spatial vector v1(x1, y1) and the frequency vector 
V1(fx1, fy1) are perpendicular to each other, so are v2(x2, y2) 
and V2(fx2, fy2), from Eqs. 1a and 1b, it is not difficult to 
prove that 
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y
fx

1
1
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, (3a) 
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fx
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2
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Under above-mentioned digital grid constraint, i.e., all 
spatial vectors are specified by integers in the Cartesian 
coordinate, the area A given by Eq. 2 must be a nonnegative 
integer. Consequently, all frequency-vector components in 
the Cartesian coordinate are rational numbers. Imagine a 
parallelogram specified by the two frequency vectors V1 and 
V2, one may see that it would be a rotated and scaled 
version of the parallelogram halftone screen with 90° 
rotation and 1/A scaling. 

If the following condition, 

2211 xyyx −= . (4) 

is satisfied, the general parallelogram becomes a 
rectangular. Furthermore, if  

21 yx ±= , and (5a) 

21 xy �= , (5b) 

the parallelogram becomes a square.  
It is interesting to notice that changing one spatial 

vector, say v1, of an orthogonal screen will only affect the 
frequency V1, while changing v1 of a nonorthogonal screen 
will affect, in general, both frequencies, V1 and V2. Since 
the two spatial vectors can be specified independently for a 
parallelogram, the number of different frequencies by using 
nonorthogonal screens is approximately N2, comparing with 
N by using orthogonal screens. Practically, the outputs of 
many nonorthogonal screens may look just like ones by 
orthogonal screens by choosing the two vectors with an 
angle between them close to 90°. This might be not difficult 
to implement especially from devices with relatively high 
resolutions in either one or two dimensions. In addition, a 
diamond-shape parallelogram can produce halftone outputs 
with hexagon-like halftone texture, which might be also 
interesting. 

Another possible extension of above analysis is also 
quite interesting. We may consider line screens as a special 
type of nonorthogonal screens, which contain at least one of 
the Cartesian components equal to unity. For example, a 45° 
rotated line screen can be treated as a special parallelogram 
specified by two spatial vectors, v1 (1, 1) and v2 (w, 0), 
where w is the period between lines measured horizontally. 
The two corresponding frequency vectors are given by V1 (-
1/w, 1/w) and V2 (0, 1), respectively. By the sampling 
theory, the frequency component one might be also 
interpreted as zero, and the frequency vector V2 might be 
considered as null and ignored for further moiré analysis. 

Moiré-Free Conditions 

One particular application of nonorthogonal halftone 
screens is to provide perfect solutions for moiré-free color 
halftoning. Moiré patterns may appear in the printed 
documents for several possible reasons. In color printing, 
the most unwanted moiré is due to the superposition of the 
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halftone screens of the different process colors. Using 
Fourier analysis provided for halftone screens, we can 
express the result caused by superposition of two different 
colors as their frequency-vector difference, Vcm = Vc ± Vm, 
where Vc and Vm are two frequency components from two 
different colors, e.g., cyan and magenta, and Vcm is the 
difference vector. Since each Fourier component has its 
conjugate, i.e., there is always a frequency vector −Vc 
represents the conjugate component of  Vc, the sign 
definition of frequency vectors is rather arbitrary. For each 
parallelogram screen, there are two fundamental frequency 
vectors, therefore, the color mixing of two screens for two 
different colors yields four difference vectors, illustrated by 
Fig. 7.  
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Figure 7. Difference vectors by interaction of two colors with 
different halftone screens 

 
If any one of these difference vectors is much shorter 

than the cut-off frequency of the sensitivity function of 
human visual system and not very close to zero, there is a 
possibility to have two-color moiré appearing on the 
halftone output at the frequency represented by the 
corresponding difference vector. The common strategy to 
avoid any two-color moiré is to make sure that no two-color 
difference vector will be too small. The two-color moiré-
free condition can be summarized by 

minmc V>± VV , (6) 

where Vc = Vc1, −Vc1, Vc2, −Vc2; Vm = Vm1, −Vm1, Vm2, −Vm2, 
and Vmin is a frequency limit set at somewhere 50-70 line-
per-inch for just-noticeable moirés. 

It is well known that the most troublesome moiré is the 
three-color moiré, usually appearing as the cyan-magenta-
black moiré in outputs by cmyk four-color printers. As an 
extension of the two-color case, the three-color moiré-free 
condition can be summarized by,  

minkmc V>±± VVV , (7) 

where Vc = Vc1, −Vc1, Vc2, −Vc2; Vm = Vm1, −Vm1, Vm2, −Vm2; 
Vk = Vk1, −Vk1, Vk2, −Vk2, and Vmin is set similar to the two-
color case. Since there are altogether sixteen different 
combinations of different color components, practically, to 
make all three-color difference vectors, as well as all two-
color difference vectors, large enough to avoid any color 
moiré is very difficult, unless the halftone screens have very 
high frequencies fundamentals, say higher than 200 line-
per-inch. An alternate, also common, approach is to make 
two of the three-color difference vectors null while keeping 
rest large. Given that both the signs and the indices of 
frequency vectors are defined somewhat arbitrarily, without 
losing the generality, the three-color moiré-free condition 
can be specified by the following two vector equations: 

0k1m1c1 =++ VVV , (8a) 

0k2m2c2 =++ VVV , (8b) 

Once the two equations, 8a and 8b, are satisfied, the rest 
combinations of three color components are equal to linear 
combination of higher-order harmonics from two colors. In 
most practical applications, they will satisfy the inequality 
7. An example is illustrated by Fig. 8. 
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Figure 8. Three-color moiré-free conditions illustrated by two 
triangles formed by vector summations 

Using scalar representation of above equations and Eqs. 
3a-3d, one can easily rewrite the moiré-free condition as 
follows, 

0111 =++
k

k

m

m

c

c

A

x

A

x

A

x

, (9a) 
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, (9b) 
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, and (9c) 

.0222 =++
k

k

m

m

c

c

A

y

A

y

A

y

. (9d) 

where the values of parallelogram area are given by Eq. 2, 
or rewritten as 

1221 ccccc yxyxA −= , (10a) 

1221 mmmmm yxyxA −= , (10b) 

1221 kkkkk yxyxA −= . (10c) 

Alternately, two vector equations in spatial vectors can be 
derived from Eqs. 9a-9d, i.e., 

0111 =++
k

k

m

m

c

c

AAA

vvv

, and (11a) 

0222 =++
k

k

m

m

c

c

AAA

vvv

. (11b) 

If all Cartesian components of spatial vectors are 
integer specified, area Ac, Am and Ak are also integers. So, by 
rearranging Eqs. 9a-9d, the three-color moiré-free condition 
can be fully specified by four integer equations:  

0111 =++ mckckmkmc AAxAAxAAx , (12a) 

0111 =++ mckckmkmc AAyAAyAAy , (12b) 

0222 =++ mckckmkmc AAxAAxAAx , (12c) 

0222 =++ mckckmkmc AAyAAyAAy . (12d) 

Obviously, other moiré-free conditions by inequalities 
6 and 7 can be also converted to integer inequalities in a 
similar matter. 

Searching Moiré-Free Solutions 

From the previous section, it is apparent that although the 
original moiré analysis is mostly based on frequency 
calculation, all moiré-free conditions for nonorthogonal 
screen halftoning can be completely specified by spatial 
vectors, which define the shape and size of parallelograms. 
Furthermore, for digital halftoning, all these moiré-free 

conditions can be stated by either integer equations or 
integer inequalities. Therefore, the number of moiré-free 
solutions is finite and all solutions can be searched by a 
computer, even though there are not enough equations 
and/or inequalities for analytic solutions. We have also 
learnt that due to the digital grid constraint the choices of 
different parallelograms are quite limited, which, on the 
other hand, allows us to do a quick searching for possible 
combinations for moiré-free color halftoning. For example, 
if we restrict the halftone screens to a frequency range 
above 120 line-per-inch for a 1200x1200 dot-per-inch 
printer, the searching is limited to all integers less than 10. 
Briefly, a possible searching routine might be described by 
the following steps: 
1. Search all possible parallelograms, which meet the 

requirement of screen sizes and shapes, and store them 
as two integer-specified spatial vectors, (x1, y1; x2, y2) 
into a screen list. 

2. For each set of three parallelograms, say (xc1, yc1; xc2, 
yc2), (xm1, ym1; xm2, ym2) and (xk1, yk1; xk2, yk2), from the 
stored screen list, check 
2a. if three-color moiré-free conditions, integer 

equations 12a-12d, are satisfied; 
2b. if all other two- or three-color moiré-free 

conditions, integer inequalities derived from Eqs. 7 
and 8, are satisfied; 

2c. if other possible additional constraints, e.g., 
symmetry appearance, are satisfied. 

3. Save the result if all constraints are satisfied, otherwise, 
stop checking, and continue to the next combination. 

4. Evaluate the result. If it is necessary, change the 
requirements for screen size, shape, moiré frequency 
limit, or others, and redo the searching. 

5. Conduct final evaluation by designing halftone screens 
based on selected geometries and generating and 
printing testing patterns. 
 
Of course, the description above only provides a 

skeleton of a possible search routine. Many possible 
variations might be implemented to speed up the searching 
and/or accomplish additional requirements. 

Example of Moiré-Free Nonorthogonal Screens 

If we assume that all three nonorthogonal screens have the 
same area, i.e., Ac = Am = Ak = A, the integer equations 12a-
12d can be significantly simplified and the searching for 
moiré-free solutions could be done even without a 
computer. As an example, by selecting A = 60, a possible 
moiré-free solution is given by 
 
Vc1 = (8, 2),  Vc2 = (-2, 7); 
Vm1 = (2, 7),  Vm2 = (-8, 2); and 
Vk1 = (6, 5),  Vk2 = (-6, 5). 

 
The three parallelograms and their spectral 

representations are shown in Fig. 9. When this set halftone 
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screens is applied to a color printer with 1200x1200 dot-
per-inch resolution, the halftone output will have the 
following frequency properties: 

 
Cyan:  75.96º, 164.9 lpi  and  -15.95º, 145.6 lpi;  
Magenta:  15.95º,  145.6 lpi  and -75.96º, 164.9 lpi;  
Black:  -50.2º,  156.2 lpi  and  50.2º,  156.2 lpi. 

 
Figure 10 shows the output by this set of nonorthogonal 

halftone screens with certain constant input for cyan, 
magenta and black channels. There are two scaled-up 
versions of the output with different scale factors in Fig. 10. 
It is certainly interesting to notice that the rosette pattern 
generated by this set of nonorthogonal screens has clear 
repeated structure, which is quite different from rosette 
patterns generated by classical rotated orthogonal screens. 

 
 

fx 

fy 

Vc1 

−Vc1 

−Vc2 

−Vk2 Vk1 

Vm2 

Vm1 

Vk2 −Vk1 

−Vm2 

−Vm1 Vc2 

Vc1 

Vk1 

Vm1 

Vc2 

Vm2 

Vk2 

 

Figure 9. Three nonorthogonal halftone screens satisfying moiré-
free conditions 

Conclusion 

Due to the “digital grid” constraint, selecting different 
frequencies, including angles and moduli, for regular 
orthogonal halftone screens is quite limited for digital 
halftoning. Instead, using nonorthogonal screens unfolds 
another dimension for the frequency choices. Therefore, for 
most printing devices with relatively high resolutions or 
high addressabilities, the three-color moiré can be 
completely eliminated by employing three single-cell 
nonorthogonal halftone screens.  
 
 

 

 

 

Figure 10. Sample halftone outputs by a set of moiré-free 
nonorthogonal halftone screens displayed in different scales 
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