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Abstract  

Instrumental color (i.e. L*A*B*) and optical density 
measurements were performed on coated and uncoated 
papers printed with water based inkjet inks using continuous 
binary array inkjet equipment. Lightfastness tests were 
performed in a QUV test chamber with Cool White 
Fluorescent lamps, Q-Sun Xenon Arc Test Chamber with a 
Window Glass Filter, and under glass at a Florida outdoor 
benchmark location (Q-Lab Weathering Research Service). 
These results were compared with two indoor exposure 
locations. Rank order was used to show good correlation 
between the various exposure methods. The results of this 
study generated data indicating that the lightfastness of 
water-based inkjet inks can be complex and dictated by the 
type of coated or uncoated paper used. This study also 
shows that inks printed on coated substrates are more 
susceptible to UV degradation than those printed on a bond 
or uncoated substrate. The development of a light stability 
test protocol is intended to simulate the conditions of the 
actual service environment. Meaningful data can be 
produced to better evaluate the “archivability” or predict 
durability of inkjet inks and substrates.  

Introduction 

Printing of documents by inkjet technology has occurred 
commercially for over 10 years. With the advent of sheet 
feed desktop printing, papers have been formulated with 
coatings and additives to enhance and improve the 
lightfastness of color office documents. Many studies have 
been completed showing the benefits of additives and 
pigment inks in protecting image quality at various light 
exposure conditions. There is work underway within the 
ANSI IT9.3 Stability of Color Images Subcommittee to 
write test standards for indoor light stability and outdoor 
durability. In addition, the subcommittee is developing 
standards addressing humidity-fastness, ozone fade and 
thermal degradation/dark stability. 

More recently, full color inkjet technologies have been 
implemented in statement, billing and data center printing. 
In these document printing businesses, low cost papers must 
be used to meet running cost requirements. In addition, azo 
type dyes are required to meet the high speed up time 
demands of high speed digital printing equipment. Overall, 

there is lower demand for long term lightfastness for 
transactional documents and billing statements when 
compared to full color photo quality images printed by 
desktop inkjet units. However, long-term archivability is 
necessary for certain documents.  

Based on this new direction for inkjet printing, a 
fundamental study was required to determine the relative 
lightfastness of uncoated or bond type papers versus lower 
cost coated papers. In this study, we report lightfastness 
results of uncoated and coated papers printed with full color 
Scitex Digital Printing VersaMarkTM Printing Systems. A 
progressive fade rate comparison is made with a xenon arc 
light source and compared to Florida sunlight as well as 
indoor exposure of sunlight through a window. These 
results are compared to results with a Cool White light 
source and a pure fluorescent office light environment. 

Fluorescent Lamps 
Historically, light stability tests using high output cool 

white fluorescent lamps have been used for color 
photographs (ANSI IT9.9)1. For example, the standard test 
condition of a low-watt cool white fluorescent light at 450 
lux/12 hour day, 60% RH & 70 F ambient room 
temperature is not accurate in approximating the variety of 
end-use environment of computer-generated images printed 
with inkjet inks. While the output of cool white fluorescent 
lamps may somewhat reproduce low light or museum 
environments, the spectrum of these lamps is limited. In 
essence, the output of these lamps do not match the spectral 
power distribution of sunlight through window glass. Cool 
white fluorescent lamps are useful for testing products 
whose primary end use is in lighted display cases or pure 
indoor fluorescent lit areas. However, making service life 
predictions with this lamp type for images displayed in 
typical indoor environments (i.e. home or office) is 
imprecise. Images displayed near windows, sliding glass 
doors, skylights, etc. can receive up to 50,000 lux of full 
spectrum sunlight (i.e. UV, Visible & IR) in the morning 
hours on a clear day. The cool white fluorescent lamp 
spectral output compared to sunlight through window glass 
is shown in Figure 1. 

Xenon Arc Lamps 
The xenon arc was adapted for accelerated weathering 

in Germany in 1954. Xenon arc testers, such as the Q-Sun 
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Xenon Test Chamber, are appropriate for photostability of 
materials because they provide the best available simulation 
of full spectrum sunlight: UV, Visible & IR light. Xenon 
arcs use filters to achieve the appropriate spectrum (e.g., 
outdoor sunlight or sunlight filtered through window glass).  
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Figure 1. Cool White Fluorescent Lamp vs. Sunlight through 
Window Glass 

 
Xenon arcs require a combination of filters to reduce 

unwanted radiation. The “Window Glass” Filter simulates 
sunlight through window glass. It is typically used to test 
products whose primary service life will be indoors. Figure 
2 shows the Spectral Power Distribution of noon summer 
sunlight behind glass compared to a xenon arc with a 
Window Glass Filter.  
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Figure 2. Q-Sun Xenon. vs. Sunlight Through Window Glass 

Experimental 

Materials 
The materials used in this study were supplied by a 

variety of paper companies in the United States, Europe and 
Japan. These papers were categorized as coated paper (CP) 
or uncoated paper (UC). CP1 and CP2 are coated papers at a 
54 (80 g/m2) and 72 (107 g/m2) pound per ream book basis 
weights (Book Weight or BW), respectively. The CP1 paper 
has a lower coating weight than CP2 and is distinguished 

from CP2 by the coating type used. CP3 is a coated one-side 
(C1S) glossy paper at 50 BW (74 g/m2). UC1 and UC2 are 
uncoated papers at 50 BW (74 g/m2) and 60 BW (89 g/m2), 
respectively. UC1 is a basic bond paper and UC2 is 
specially formulated paper for increased inkjet ink 
permanence when exposed to water. UC3 is machine 
finished 60 BW (90 g/m2) paper that is treated for better 
inkjet image quality.  

The inkjet inks used in this study were Cyan #6092001, 
Magenta #6092002, Black #6092003 and Yellow #6092004 
from Scitex Digital Printing, Inc. These inks are water-
based and were prepared with azo-type dyes except for the 
Cyan dye that was prepared from a phthalocyanine base. 
These dyes are known to have relatively good lightfastness 
properties for inkjet images as communicated by the 
manufacturers. The inks were formulated with other 
components to run in Scitex continuous inkjet printers and 
had viscosities of 1.1 centipoise. 

Printing 
All papers and inks were printed on a Scitex Digital 

Printing, Inc. VersaMarkTM Business Color Press TM at 500 
feet per minute. The continuous inkjet print heads used to 
print the inks were nine inch wide 9500 Series Printheads 
and PS-90 Print Stations and Fluid Systems. All the images 
were printed on one side with an ink saturation level 
(linearization level) sufficiently high enough for the “best” 
image quality but not to cause ink to penetrate completely 
through the paper causing a show through condition on the 
unprinted side. The images printed for this study were 0.5 
centimeter square images. 

Natural and Accelerated Exposure Testing 
Natural and accelerated exposure tests were performed 

by Q-Lab Weathering Research Service. Instrumental color 
and densitometer readings on four sample areas were taken 
every 10 hours. Three replicates of six sample types (18 
samples) of printed coated & uncoated papers were tested as 
follows: 
I. Outdoor Under Glass Exposure in a ventilated exposure 

cabinet at 45°S in Florida for 72 hours (three days). 
II. Cool White Fluorescent Exposure in a QUV 

Accelerated Weathering Tester per ASTM G154.2 
Irradiance level was 0.060 W/m2 at 420 nm, chamber 
temperature at 31-35° C for 40 light hours. 

III. Xenon Arc with Window Glass Filter Exposure in a  
 Q-Sun Xenon Arc Test Chamber per ASTM G155.3 

Irradiance level was 0.35 W/m2 at 340 nm, chamber 
temperature at 63°C Black Panel Temperature per 
ASTM D3424, Method 3.4  

IV. Scitex Digital Printing, Inc., business document 
exposure was completed in an interior building hallway 
(Indoor Hall) with both fluorescent light and daylight 
exposure up to 30 weeks or 5000 hours. 

V. Scitex Digital Printing, Inc., interior room (Indoor 
Fluorescent) with only fluorescent light exposure for up 

 to 2000 hours. 
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LAB and Delta E Measurements 
All L*A*B* measurements were made with a Gretag 

SPM 50 Spectrophotometer in accordance to ASTM D2244 
Illuminant D65, 10° Observer, Specular included. 
Measurements were made at the indicated time intervals on 
three replicate samples for each process color image on each 
paper. Delta E calculations were derived from LAB 
measurements on images after printing with minimal light 
exposure. 

Density Measurements 
Density measurements were completed on a Macbeth 

TR927 Densitometer. The R,G, B, and Othro filter were 
used for Cyan, Magenta, Yellow and Black printed images, 
respectively. 

Results and Discussion 

Exposure Test Results 
Exposure to the Q-Sun Xenon Arc initially revealed 

that there were large Delta E values for the coated papers 
(CP). As is well known in the dye and inkjet industries, both 
the magenta and yellow inks showed a high level of fade up 
to 40 hours of Xenon Arc light exposure as shown in Figure 
4. For CP1 and CP3, the Delta E values for the fade of the 
cyan ink was comparably lower than the magenta and 
yellow ink fade with the black ink showing the lowest Delta 
E or fade under Xenon Arc. Values for CP2 fell in between 
those of CP1 and CP3. A value of Delta E above 10 
indicates a significant level of ink or dye fade. 
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Figure 4. Fade of Coated Papers by UV Light Sources. 

 
These values for Delta E were also compared to the 72 

Hour Delta E values for Florida Sun outdoor exposure 
under glass. As can been seen in Figure 4, these values are 

comparable to the Delta E values for the 40 Hour Xenon 
Arc. In order to get a further comparison, these values were 
compared in Figure 4 to 2000 hour through 5000 hour 
exposures to natural indoor light and fluorescent exposure 
in an Indoor Hall. Again, the Delta E values for the Indoor 
Hall exposures are on the same order as the 40 hour Xenon 
Arc and 72 hour Florida Sun exposures. 

Further exposures were completed with uncoated 
papers (UC) shown in Figure 5. With UC1 and UC2, it is 
observed that the Delta E and values and relative fade is 
much lower. In most cases of the cyan, magenta and yellow 
inks the Delta E values are less than 50 percent than that for 
the coated paper in Figure 4. These differences are 
particular noteworthy for the Florida Sun and the Indoor 
Hall exposures. For the uncoated papers in the Indoor Hall 
exposure, all inks except for the yellow ink exhibited Delta 
E values under 10 after 5000 hours. 
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Figure 5. Fade of Uncoated Papers by UV Light Sources. 

 
During this study, the main focus was directed toward 

an understanding of the higher level of fade for the coated 
papers versus the uncoated papers at the same exposure 
times with the different light sources. The primary factor 
considered was the higher initial density of the coated 
papers when compared to the uncoated papers as shown in 
Table 1. As can be seen, the coated papers (CP) have a 
higher initial density compared to uncoated papers (UC) for 
most colors. This difference in density can be attributed to 
the fact that ink is primarily absorbed in the surface layer of 
the coated papers.5 Coated papers are typically coated with 
coatings that contain titanium dioxide, calcium carbonate 
and other materials that quickly absorb ink components and 
hold the dye on the surface of the paper increasing the 
optical density of the ink and dye colors. CP2, with the 
heaviest coating, shows the highest optical density values 
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except for magenta. In comparison, when low viscosity 
water based inkjet ink is printed on uncoated or bond paper, 
the ink and dye will quickly absorb into the internal 
structure of the paper and result in low optical densities. 
This can be seen with UC1, a basic bond paper. UC2 and 
UC3 have machine-finished treatments that increase optical 
density over UC1 except for black. 

 

Table 1. Initial Density Values for Coated and Uncoated 
Papers 

Papers Cyan Magenta Yellow Black 
CP1 1.23 0.73 0.89 1.53 
CP2 1.53 0.83 1.16 1.70 
CP3 1.42 0.92 1.16 1.40 
UC1 0.72 0.51 0.65 1.36 
UC2 1.01 0.78 0.92 1.25 
UC3 1.07 0.85 0.98 1.19 
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Figure 6. Fade of Coated Papers by Fluorescent Light Sources. 

 
Since the fade results for Xenon Arc exposures are 

substantially higher for the variety of coated papers 
compared to the uncoated papers it can be concluded that 
initial optical density is a factor. This factor can be 
attributed to the fact that more dye molecules will be on the 
surface of the coated papers. Thus, these dye molecules are 
more directly exposed to the light source. In the case of the 
uncoated paper, higher concentrations of the dye molecules 
are absorbed into the bulk of the paper. Therefore, the paper 
fibers and formulation components protect a certain portion 
of the dye directly from the light source. 

Cool white fluorescent exposures completed in a QUV 
Tester are shown in Figures 6 and 7. As can be seen in 
Figure 6, the level of fade for the coated paper after 40 
hours of exposure to QUV fluorescent light is above 10 
Delta E for the yellow ink. The values are compared to 
Indoor Fluorescent lighting typically used in an office 

environment. For CP3, the magenta ink exhibited a high 
level of fade in this lighting. When compared to Xenon Arc 
fade in Figure 4, the fluorescent light fade results are 
substantially lower except when comparing to the Indoor 
Hall (up to 5000 Hours) which also contained fluorescent 
lighting owing to a close result for the CP1 Yellow, CP3 
Yellow and CP3 Magenta up to the 2000 hour level. Values 
for CP2 are between CP1 and CP3 with Black at 
comparable levels.  
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Figure 7. Fade of Uncoated Papers by Fluorescent Light Sources 

 
For the uncoated papers in Figure 7, the fluorescent 

light shows very low levels of fade except again for the 
UC3 Yellow. This result at 2000 hour is comparable to the 
Delta E at about 30 for UC3 in the Indoor Hall (not shown) 
at a Delta E of 38.63 at 2000 hours. The fade of the Black 
dye under fluorescent light was considered very low. Values 
for UC2 are between UC1 and UC3 with the Black at 
comparable levels. 

Rank Order Correlation 
For most materials, it is very difficult to correlate real 

time (natural) exposure with laboratory results (X hrs 
natural exposure = Y hrs Accelerated laboratory exposure). 
One of the few useful methods is a comparison of relative 
rank orders. Spearman Rank Order is a statistical measure 
that provides a value for a set of performance rankings. For 
example, if two sets of data are being compared, rank order 
indicates how closely the rankings match one another. 
Perfect correlation is represented by a value of 1.0. Random 
correlation is represented by a value of 0. Negative 
correlation is represented by a value of –1.0. Spearman rank 
correlation coefficients (rs) are commonly used for relating 
weathering tests. See Table 2 below. 
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Table 2. Example of Rank Performance 
Material Rank: 

Test 1 

Test 2 Test 3 Test 4 

A 1 1 2 6 

B 2 2 6 5 

C 3 3 3 4 

D 4 4 4 3 

E 5 5 1 2 

F 6 6 5 1 

Rs to 

Test 1 

-- 1.0 

Perfect 

Correlation 

0 

Random 

-1.0 

Negative 

Correlation 

 
 
 
In correlating accelerated and real exposure tests, the 

rank performance of the materials exposed to both 
environments is compared, and the strength of the 
association between the tests is therefore established.  
 
Rank Order Discussion of Specific Test Results  

Instrumental color measurements were taken on all test 
specimens before and after exposure. The color change in 
Delta E units was recorded for each specimen. Rank order 
correlation was performed by comparing Delta E readings 
taken from one exposure of individual C,M,Y and K 
(Black) values for one substrate sample type to Delta E 
readings of the same sample type from another exposure. 
For example, the Delta E reading for the “Y” value of 
sample type CP1 after exposure in Florida behind glass was 
compared to the CP1 “Y” value after 40 hours exposure in a 
Q-Sun Xenon Arc Test Chamber. 

Delta E measurements for each of the six paper 
substrates and ink colors were compared to each other from 
one exposure type to another (e.g., Indoor Hall vs. QUV 
Cool White Fluorescent lamp exposure). Spearman rank 
was then performed on meaningful data sets. Examples of 
these rankings are shown in Figure 8 – 11. 
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Figure 8. Rank Order of QUV vs. Indoor Fluorescent for Yellow 
Printed Papers  

Indoor Fluorescent vs. Indoor Hall (Magenta)
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Figure 9. Rank Order of Indoor Fluorescent vs. Indoor Hall for 
Magenta Printed Papers  
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Figure 10. Rank Order of Q-Sun vs. Indoor Hall for Magenta 
Printed Papers  
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Figure 11. Rank Order of Q-Sun vs.Florida Outdoor Behind Glass 
for Cyan Printed Papers 

 
Figure 8 shows excellent correlation between the QUV 

and the Indoor Fluorescent fade results indicating a 
usefulness of the QUV to determine fade print durability in 
an indoor office environment. Figure 9 indicated that the 
strong fade behavior of the magenta dye is independent of 
the light source. The differences in Figure 10, may be 
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explained by differences in temperature between the Q-Sun 
and typical indoor office environments. However in Figure 
11, a high rank order correlation indicates the usefulness of 
Xenon Arc and Florida under glass exposure for inkjet 
imaging materials.  

Testing Issues 
There are a number of issues that must be considered 

when testing for lightfastness: Light Intensity, Temperature, 
Temperature Sensitivity of Materials, Humidity, Dark 
Stability, Linearity of Degradation, Reciprocity Failure, Gas 
(Ozone) Fading, Paper Yellow and Lux vs. Watts per 
Square Meter. Because of these parameters, there can be 
variability in lightfastness test results with ink jet printed 
papers. Therefore, until these parameters are fully 
investigated, service life predictions cannot be made with 
certainty.  

Conclusions 

Results from this study indicate that inkjet inks printed on 
coated substrates are more susceptible to UV degradation 
than those printed on a bond or uncoated substrate.  

Xenon arc with Window Glass Filter can be used as a 
predictive test for inks/substrates whose end use is intended 
for indoor environments with windows. Additionally, QUV 
with cool white fluorescent lamps can be used to simulate 
the accelerated effects of indoor environments, for inkjet 
inks and substrates used to create business documents for 
indoor office or retail environments. Florida behind glass 
natural exposure can be used as an accelerated test to 
simulate indoor environments with windows. Variations in 
this study could be related to differences in temperature or 
humidity levels. 

There was excellent rank order correlation between 
several of the Indoor Hall and Indoor Fluorescent and 
accelerated laboratory exposures (Q-Sun and QUV) along 
with Florida behind glass exposures. Both natural and 
accelerated tests were able to distinguish between good and 
bad performers.  

This study indicates that Black inkjet inks are 
minimally affected by both natural and accelerated light 
stability tests. The Black inks should provide excellent 
archivability on uncoated and coated papers.  

Future tests for inkjet inks, coated and uncoated 
substrates should include simulating the ambient effects of 
humidity, temperature and ozone. Presently, the 
repeatability and reproducibility of the various exposure 
methods is unknown. Variability resulting from specimen 
preparation and color measurement techniques is also 

unknown. It would be useful to determine an appropriate 
benchmark exposure based upon actual, real world service 
conditions for future studies. One research option would be 
to select a reference material with known durability and 
expose it along with the test specimens to a predetermined 
change. The test specimen data could then be normalized 
against the reference material’s performance. 
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