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Abstract 

We present a method to characterize the ink jet printing by 
means of spectral reflectance measurements and 
simulations, which includes optical properties of primary 
inks, the ink volume, scheme of color-mixing for generating 
secondary colors. The simulations are based on Kubelka-
Munk theory whose availability to ink-jet printing is 
discussed. 

1. Introduction 

Ink-jet is a non-impact dot-matrix printing technology in 
which droplets of ink are jetted from a small aperture 
directly to a specified position on a substrate to create an 
image.1 The color rendition of the printed image depends 
above all on the optical properties of the primary inks and 
the scheme for generating the secondary colors. The 
saturation of the printed colors on the other hand depends 
also on the volume of the printed inks or equivalently the 
thickness of the ink layers. Therefore characterizations of 
the output print in terms of ink volume, the scheme of ink 
mixing, light absorption and light scattering are of essential 
importance in controlling and understanding the quality of 
the color reproduction. 

2. Methodology 

The full tone samples were printed with primary- (cyan, 
magenta and yellow) and secondary-colors (red, green and 
blue). In order to prevent the inks from penetrating into the 
substrate, ink-jet films were used as the substrates. 
Therefore the sample consists of an ink layer and the plastic 
substrate. By varying ink-level specification in the printer 
driving software, one can obtain samples printed with up to 
5 ink levels (the ink-volume increases from the ink-level 1 
to 5). The spectral reflectance values of the printed samples 
were measured by using SpectroScan, which covers the a 
range of wavelength between 380 and 730 nm with an 
interval of 10 nm. To achieve high reflection from the 
samples, a white and opaque background (a bunch of white 
paper) has been lain under the samples. 

According to Kubelka-Munk Theory,2 the spectral 
reflectance value of an ink layer is a function of its 
scattering- and absorption-lengths, sq(λ)zq and kq(λ)zq, i.e. 

Rq(λ, zq) = f(sq(λ)zq, kq(λ)zq)    (1) 

where sq(λ) and kq(λ) are the scattering- and absorption 
coefficients and zq is the thickness of the ink layer. The 
subscript is an index of color, and q = c, m, y means cyan, 
magenta and yellow, respectively. When the interface 
reflection is negligible, the function in Eq. (1) may be 
written as3,4 
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where Rg(λ) is the spectral reflectance of the bare substrate 
while 
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stands for that of an infinitely thick ink layer ).( ∞→z  
Therefore by fitting to two sets of the measured spectral 
reflectance values, one can obtain the scattering-absorption-
lengths of the ink. In the present study, one of the data was 
obtained from samples that were printed in ink level 3 
(defined by the printer driving program) primary inks and 
another set was from samples of twice printed with the same 
ink level. 

The scattering- and absorption-length of the secondary 
colors was computed by applying additivity approximation. 
For example, color red is composed of ink magenta and ink 
yellow. Its scattering- and absorption-lengths, be calculated 
 

srzr = βmsmzm + βysyzy  (4) 
 

krzr = βmkmzm + βykyzy  (5) 
 
where βm and βy are the relative ink thicknesses of magenta 
and yellow. 

3. Results and Discussions 

In this section we present the experimental measurements 
together with our simulations. As mentioned above, the 
spectral absorption- and scattering-lengths (kz and sz) of the 
primary inks were obtained by fitting to the experimental 
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spectral reflectance values of samples printed with ink level 
3. 

 

Figure 1. Scattering- and absorption-lengths of the primary inks 
obtained by fitting into the measured spectral reflectance values 
of samples printed on ink-jet films with (printer driving) program 
specified ink level 3. 

 

Figure 2. Spectral variation for the relative strength of the 
absorption and the scattering. 

3.1. Spectral Reflectance Values of Primary Inks 
The scattering- and absorption-lengths of the primary 

colors are shown in Fig. 1. The inks show clearly 
absorption/transparent band structure. Interestingly enough, 
the inks also show remarkable scattering strengths in their 
transparent regions, even though their peak values are about 
5 or more times smaller than those of their absorption-
lengths. Considering the fact that the reflectance depends 
not only on the absolute values of their scattering- and 
absorption-lengths, but more importantly on their relative 
strength (it can be clearly seen from the expression of )∞R , 
k/s and s/k ratios are presented in Fig. 2. Scattering may 
play a dominant role (s/k >> 1) in the non-absorption 
regions which makes the color visible even for a thick ink 
layer where reflection from the substrate background 
becomes negligible. 

After obtaining the scattering- and absorption-lengths 
of the primary ink layers (ink level 3) one can then predict 
reflectance values for an ink layer of any given ink 
thickness, αq, by applying 

Rq(λ, αqzq) = f(αqsq(λ)zq, αqkq(λ)zq)        (6) 

where αq(q = c, m, y) is the relative ink thickness of the ink 
layer. Inversely, for known spectral reflectance values, Rq, 
the relative ink thickness of the ink layer, αq, can be 
estimated by fitting according to Eq. (6). Because the 
spectral reflectance values of each sample consist of 
reflectance values at 31 wavelengths (400 − 700 nm), the 
agreement between the computed spectral reflectance values 
and the measured ones can serve as a quantitatively test to 
the quality of the scattering- and absorption-values obtained 
from ink level 3. The agreement may also serve as a test to 
the availability of the present method. Finally the thickness 
of the ink layer is proportional to the printed ink volume. 
Therefore one can actually characterize the ink application 
controlled by the printing engine. 
 

 

Figure 3. Simulated and measured spectral reflectance values for 
samples printed with different (printer driving) program specified 
ink levels. The dot line is the spectral reflectance values of the 
bare film. 

 
In the present study, the test was made by applying the 

scattering- and absorption-coefficients to compute spectral 
reflectance values for samples printed with other 4 ink 
levels (ink level 1, 2 ,4 and 5) and to compare with their 
measured values as shown in Fig. 3. The excellent 
agreement between the computed and the measured spectral 
reflectance values over the whole range of visible light may 
be considered as a confirmation for the method validity and 
for the reliability of the sq(λ), kq(λ) values. 

It is worth to notice that the 5-ink volume specification 
in the printer driving program does not always mean 5 
different printing ink levels. For ink cyan there are 5 
different ink levels indeed, but there are practical only 3 and 
4 different ink levels for ink yellow and ink magenta, 
respectively. The variation of the actual ink volumes (αq) 
with respect to the (printer driving program) specified ink 
levels (1-5) is shown in Fig. 4. Additionally the practical ink 
volumes vary non-linearly with respect to the program 
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specified ones (for simplicity, the actual volume of ink level 
1 has been set as unit). 
 

 

Figure 4. Actual ink volumes α = zn/z1 vs. printer driving program 
specified ink volumes (n=1-5 for ink level 1-5). The actual ink 
volume for the program specified ink level 1 (z1

) has been set as 
unit for each color. 

 
 

 

Figure 5. Scattering- and absorption-lengths of the secondary 
colors obtained by applying the assumption of additivity. 

 

3.2. Spectral Reflectance Values of Secondary Colors 
The scattering and absorption lengths of the secondary 

colors (ink level 1), were shown in Fig. 5. They were 
obtained by applying the additivity given in Eqs. (4, 5). Fig. 
5 shows clearly existence of absorption/transparent band-
structures that match well intuitiveness. Consulting to the 
Fig. 1, one can easily see correlations between these 
absorption=transparent structures of the secondary colors 
with those of their primary components. 

The weighting factors (βq, q=c,m,y) representing the 
contributions from the primary colors, were determined by 
fitting the simulations to the experimental spectral 
reflectance data (see Tab. 1). Similar to the case for the 
primary inks, the inks amounts vary nonlinearly with 
respect to the printer specified ink levels. Moreover the 

relative amount of the primary inks may even vary from one 
ink level to another. Color green, for example, the ratio 
βy=βc varies only modestly with respect of different printer 
specified ink levels. However it varies significantly for red. 
 

Table 1. Ink Composition for Secondary Colors From 
Their Primary Components. The Relative Ink 
Thicknesses Are Relative to the Ink Level 1 for Each 
Primary Ink. 
Secondary Printer Relative Ink Thickness 

Color Printer 
Ink Level 

βc βm βy 

 
 

Red 

1 
2 
3 
4 
5 

 0.84 
1.18 
1.62 
1.92 
2.47 

0.80 
1.05 
1.22 
1.36 
1.30 

 
 

Green 

1 
2 
3 
4 
5 

0.85 
1.02 
1.41 
1.83 
2.27 

 0.90 
1.24 
1.93 
2.65 
2.78 

 
 

Blue 

1 
2 
3 
4 
5 

1.24 
1.71 
2.87 
4.13 
4.27 

0.55 
0.67 
0.87 
1.13 
1.42 

 

*The relative ink thickness of the primary inks, βq (q = c, m, y), that 
contribute to the secondary colors. Note that βq has the same definition as 
αq in Fig. 4 
 
 

The simulated spectral reflectance values together with 
the corresponding experiment values are shown in Fig. 6. 
As one can see that the simulations agree fairly well with 
the experimental data. 

 
 

 

Figure 6. Simulated and measured spectral reflectance values for 
samples in secondary colors. The samples were printed with 
program specified ink level 1. 
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3.3. Some Remarks on Kubelka-Munk Theory 
Kubelka-Munk (K-M) theory has been the most widely 

applied theory for the colorist in research and in industries 
since it was introduced in 1930’s. Over the years the KM 
theory has been subjected to very close scrutiny. The result 
is an appreciation of the limitations and strengths of the 
theory.5 Of the original assumption made by Kubelka and 
Munk, that of uniformly diffuse forward and reverse flux 
through the sample is the most possible source of 
imprecisions, especially it is applied to a system having 
strong absorption. The question is how well that K-M 
theory can be applied to ink jet printing. 

As shown in Fig. 1 the light-ink interaction (or the ink 
spectrum) shows a clear multi-band characteristics which 
makes the statement that ink is of strong absorption only 
conditionally true, i.e. for the light whose wavelength lies in 
the absorption band of the ink. For the light whose 
wavelength lies well off the absorption band, the absorption 
is little important and the scattering plays a dominant role 
(see Figs. 1 and 2). Therefore for a day light type of 
illumination the portion of the illumination whose 
wavelengths are well off the absorption band of the ink, its 
light distribution will probably remain well diffuse if the 
original illumination is diffuse. 

The reason behind the success for the K-M theory in 
the present study may lie on two factors. First the portion of 
light that stimulates human color vision has wavelength 
well off the absorption band of the printed inks. This 
portion is properly described by the K-M theory. Second the 
portion of illumination whose wavelength lies in the 
absorption band will mostly be filtered out by the ink 
absorption even though the light may not be accurately 
treated in the K-M theory. 

The validity of the K-M theory may be characterized 
more quantitatively by the relative strength of the scattering 
over the absorption, or the s/k ratio. For the portion of 
illumination whose wavelength lies in the region where s/k 
>> 1 (non-absorption band), the light propagation is well 
described by the K-M theory as being pointed out by other 
authors.6 On the other hand, for the portion of illumination 
whose wavelength lies in the region where s/k << 1 
(absorption band), this portion of light is filtered out by 
absorption after passing through the optically thick ink 
layer. But for the portion of illumination whose wavelength 
lies in the region where s/k ~ 1, the assumption of diffused 
light distribution will be broken down and may result in 
remarkable errors. Therefore the accuracy of predictions 
made by applying the K-M theory depends on the spectral 
structure of the ink. Explicitly speaking the narrower the 
band where s/k ~ 1 the higher the accuracy of the 
predictions for the spectral reflectance and vice versa. 

4. Summary 

We developed a method to characterize the printed ink 
volume and the properties of the ink by means of spectral 
reflectance measurements. The measured data were 
analyzed with the help of theoretical simulations. The 
scheme of color composition for generating the secondary 
colors (from the primary inks) was obtained. Simulations 
for the spectral reflectance values have been carried out for 
both primary- and secondary colors. The simulations have 
been in fairly good agreement with the measurements. This 
may suggest that K-M theory can even be applied in ink jet 
printing with satisfactory precision for color reproduction. 
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