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Abstract  

We have fabricated carbon tubule coils in nanometer scale 
(called nanocoils) and found that they are a good candidate 
for the electron emission devices rather than carbon nano-
tubes. This is attributed to their specula helical morphology 
and the larger number of emission sites uniformly dispersed 
in the carbon nanocoil field emitter arrays. The field 
emission from carbon nanocoils with different diameters 
and lengths shows that the turn-on voltages of carbon nano-
coil field emitters are dependent on the diameters of the 
coiled tubules. Decreasing the thickness of iron film and the 
flow rate of acetylene gas can decrease the average diameter 
of grown carbon nanocoils. Decreasing the growth time can 
proportionally decrease the average length of the coils. 
Furthermore, increasing the growth temperature increases 
the density and length of the carbon nanocoils. It is 
expected to use carbon nanocoils with small diameter and 
short length to fabricate high performance flat panel 

display, which can be driven at low voltage and has high 
resolution and brightness. 

Introduction 

Development of electron emission devices being able to 
operate at a low voltage could be one of the key issues in 
the field of imaging science. Field emission device using 
carbon nanomaterials1-5 have attracted much attention in this 
field because of their low driving voltage, which can be 
applied for such as the charging devices in electro-
photograph, direct making imaging, and flat panel display.
The well-known carbon nanotube is a good candidate for 
these devices. However, carbon nanotubes grown in an 
array prepared by chemical vapor deposition (CVD) are 
generally densely planted and the electric field is strongly 
concentrated at the edge of the array.6-8 This results in the 
nonuniformity and instability of field emission from carbon 
nanotube arrays. 
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Figure 1. SEM micrographs of carbon nanocoils synthesized at different temperatures with the iron film thickness of 10 nm and the 
acetylene flow rate of 30 and 60 sccm, respectively. 
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In our previous work, we have reported that carbon 
nanocoils prepared by thermal CVD9-11 with iron and indium 
tin oxide (ITO) as the catalysts have the similar excellent 
properties of field emission because of their nanostructure 
and specula helical morphology.12-14 It is inferred that the 
field emission from carbon nanocoils would also be affected 
by their geometric sizes which are directly related to their 
radii of curvature, nanostructures and the number of field 
emission sites, etc. In this paper, we report the effective 
methods to control the average coil diameter and the coil 
length so as to improve the properties of their field 
emissions. 

Synthesis of Carbon Nanocoils 

The method of catalytic thermal CVD has been used to 
synthesize carbon nanocoil. We used ITO-coated glasses as 
the substrates. The substrates were patterned with iron films 
by electron beam deposition through shadow masks or by 
resist process. The film thickness was changed from 8 to 20 
nm. The samples were placed on a quartz boat inserted into 
the center of a tubular electric furnace. The reaction gas 
used was acetylene with the flow rates of 30 to 60 sccm and 
the carrier gas was helium with the flow rates of 200 to 230 
sccm. The reaction temperature was changed from 620 to 
700•C for 3 to 30 min. The deposits were characterized by a 
scanning electron microscope (SEM) and a transmission 
electron microscope (TEM). 
 

100nm
 

Figure 2. TEM micrograph of a carbon nanocoil. The carbon coil 
consists of three helical tubules with a same pitch. A catalyst 
particle is at the tip of the coil. 

 
Figure 1 shows the SEM micrographs of carbon 

nanocoils grown at the temperature of 620, 680 and 700oC 
for 30 min with the acetylene flow rate of 30 and 60 sccm, 
respectively. The Fe film thickness is 10 nm. It is found that 
more than 95% deposits are carbon coils with various 
diameters and pitches. The coil diameters are different from 
each other, ranging from several tens to several hundreds of 

nanometers. The coils selectively grow out at the iron-
deposited area although they are not well aligned along the 
direction perpendicular to the surface. Figure 2 shows the 
TEM micrograph of the tip of a carbon nanocoil. It is 
observed that a carbon coil usually consists of two or more 
carbon tubules (three tubules in this image) and each of 
them grows with the same pitch but is different in diameter. 
The enlarged TEM micrograph shows that the coiled 
tubules partly consist of graphene sheets similar to that in 
carbon nanotubes.8 We have also measured the electric 
conductivity of carbon nanocoils with different diameters 
and pitches, which is ranged from 90 to 200 S/cm and 
shows no obviously dependence on these parameters.15 It is 
also clearly observed that a catalyst particle is at the tips of 
the coil suggesting a tip growth mechanism. The shape and 
the chemical composition of the catalyst determines the 
structure of the coil including its external diameter, pitch, 
number of tubules and the relative arrangement of the helix-
shaped tubules.13 

It is observed from Fig. 1 that increasing the reaction 
temperature increases the density and the length of the 
carbon nanocoils. This is resulted from the increase of the 
reactivity of the catalyst particles and the density of 
hydrocarbon in the gas phase created from the pyrolysis of 
acetylene. With the decrease of the flow rate of acetylene, 
the diameters and pitches of carbon nanocoils are decreased. 
In the case of growth temperature of 700oC, the average 
diameters are reduced from 500 nm for the acetylene flow 
rate of 60 sccm to 200 nm for that of 30 sccm. The diameter 
of a tubule is considered to be determined by the size of the 
catalyst particle at its tip. This indicates that either the 
formation of catalyst particles is affected by the concen-
tration of the reactive gas or the coils are grown mainly 
under the catalyst particles with smaller sizes at a lower 
acetylene flow rate. 

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 le
ng

th
 (

µm
)

Time (min)  
Figure 3. Dependence of the average length of carbon nanocoils 
on the growth time. 

 
Figure 3 shows the dependence of the average length of 

carbon nanocoils on the growth time in the reaction 
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conditions of acetylene flow rate of 60 sccm and the growth 
temperature of 700oC. It is clear that the length of carbon 
nanocoils is proportional to the growth time. The offset time 
of near 1 min is correspondent to the time needed for the 
transport of the acetylene in gas line until it reaches the 
sample surface. The growth rate of carbon nanocoils in this 
case is about 1 µm/min. This value would be different from 
the conditions of sample, such as the Fe thickness and the 
kind of ITO substrate used.  

Field Emission Properties 

Field emitters were fabricated using the grown carbon 
nanocoil arrays as the cathode and the ITO-coated glass 
substrates as the anode. The gap between the two electrodes 
was set to be 130 µm. In order to observe the field emission 
directly, we also used some phosphor-coated ITO glass 
plates as the anode. The field emission current was 
measured at room temperature as a function of applied 
voltage at a pressure of 1x10-6 Torr. The applied voltage was 
changed from 0 to 1000 V. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Optical micrographs of (a) carbon nanocoil field 
emission array prepared on an “OPU” patterned Fe film by CVD 
method and (b) the fluorescence pattern from the same carbon 
nanocoil field emission display. 

 
Figure 4(a) shows the optical micrograph of a 

fabricated nanocoil field emission array on an ITO-coated 
glass substrate. The black parts are carbon nanocoils 
synthesized on the patterned iron films by CVD method. 
The coils selectively grow out at the iron-patterned area. 
There is no coil grown on the substrates without the iron 
film, suggesting that the iron is essential catalyst to grow 
carbon nanotubules. The bright fluorescence pattern from 
the FED is shown in Fig. 4(b). The electron emission form 
the carbon nanocoil field emitter is more uniform compared 
with that of the CNT emitter. It is observed from Fig. 2 that 
the body of a coil takes an angular shape rather than a 
circular one, which is believed to be determined by the 

structure of the catalyst particles at its tip. These sharp 
edges or corners at the bodies of the carbon nanocoils are 
possible to form the electron emission sites. Because of the 
unique morphologies of the coils, a large number of edges 
or corners exist and are uniformly dispersed. These 
characteristics of the nanocoils indicate that the space 
potential in a nanocoil field emitter is uniform from the 
center to the edge of the coil array, which is quite different 
form the case of the CNT array grown densely and 
uniformly. The long-term test was performed and shows 
that carbon nanocoil field emitter is very stable up to 100 h. 
The stability of the field emission would be attributed to the 
large number of emission sites formed by the sharp tips, 
edges or corners on the bodies of nanocoils.12,14 
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Figure 5. Curve of the emission current density vs applied voltage 
for the nanocoil field emitters with the average coil diameters of 
200 and 500 nm, respectively. 

 
It is known that the field emission properties can be 

improved by decreasing the radii of curvature of emission 
sites. So decreasing the diameters of the carbon nanocoils is 
desired to get better performance. As mentioned above, the 
diameter of carbon nanocoils can be effectively reduced by 
decreasing the acetylene flow rate in CVD process. We take 
this method to fabricate carbon nanocoil field emitter under 
the conditions of acetylene flow rate of 60 and 30 sccm, 
respectively with the Fe film thickness of 8 nm. Figure 5 
shows the I-V properties of the corresponding carbon 
nanocoil filed emitters. The dotted and solid curves are for 
the average diameters of 500 nm and 200 nm, respectively. 
With the decrease of the coil diameter, the turn-on voltage is 
decreased from 180 to 90 V. This is attributed to the 
reduction of the radii of emission sites. 

It is noted that the carbon nanocoils used in the above 
experiments are as long as several tens of micrometers. In 
these cases, the circuit short would happen when reducing 
the electrode gap to decrease the operation voltage and 
reduce the dot gap to improve the resolution of FED. It is 
necessary to decrease the coil lengths. We take the method 
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of reducing the growth time in CVD process. In compar-
ison, we fabricated the carbon nanocoil field emitter array 
under the condition of growth temperature of 700oC and 
growth times of 3 and 8 min, respectively on the substrates 
with the Fe film thickness of 20 nm. In the case of 3 min 
growth, carbon nanocoils are grown together with a great 
number of carbon nanofibers. With the increase of growth 
time, the length and the density of carbon nanocoils are all 
increased as shown in Fig. 3. It is also found that the dia-
meters of the grown coiled tubules are larger than those 
synthesized in the condition of Fe film thickness of 10 nm 
as shown in Fig. 1. This behavior is similar to the growth of 
carbon nanotubes using the iron or nickel film as the 
catalyst.16 
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Figure 6. I-V properties in the field emission from the samples 
with the growth time of 3min and 8 min. 

 
 
Figure 6 shows the I-V properties in the field emission 

from the samples with the growth times of 3 min and 8 min. 
For the 3 min growth (open circles), only a few coils grow, 
the emission is mainly from the carbon fibers, while for the 
8 min growth (closed circles), the emission is mainly from 
the carbon coils. However, as mentioned above, the larger 
the diameter of tubules is, the higher the turn-on voltage is. 
In order to obtain short and slender coils, it would be an 
effective method to decease the iron thickness, gas flow rate 
and growth time in the CVD process and this is also a 
subject for our further study. 

Conclusion 

Due to the uniform distribution of the electric field and the 
large number of emission sites, the carbon nanocoils exhibit 
excellent field-emission properties. The growth of the 
carbon coils can be controlled. Decreasing the growth time 
decreases the length of carbon nanocoils. Reducing the gas 
flow rate reduces the average diameter of coiled carbon 
tubules and consequently reduces the turn-on voltage of the 
field emission. Decreasing of the growth time, gas flow rate 

and iron film thickness is advisable to fabricate the high-
performance carbon nanocoil field emitters. 
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