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Abstract 

Experimental, theoretical, and numerical investigations have 
been carried out to evaluate resonance frequency and stiff-
ness of a magnetic bead chain in the magnetic filed. Chains 
formed on a solenoid coil were vibrated by the sine-wave 
excitation and impact methods and the resonance frequency 
was deduced. It showed little dependency on the magnetic 
flux density and the bead diameter, because both the equiva-
lent stiffness and the chain length were large in accordance 
with the increase of the magnetic flux density. These char-
acteristics were confirmed by a theoretical consideration 
based on an assumption of potential energy minimization 
and a numerical calculation with the Distinct Element 
Method. Stiffness of the chain was directly measured by ob-
servation of chain deflection in inclined gravitational field 
and it also confirmed the dynamically deduced characteris-
tics. It was concluded that the resonance frequency was 
20−60 Hz and the static stiffness at the top of the chain was 
10−4−10−2 N/m. The investigation is utilized for the im-
provement of the two-component magnetic blush develop-
ment subsystem in electrophotography. 

Introduction 

A magnetic brush development system1,2 is most widely 
used for high-speed color laser printers. A typical schematic 
of this system is illustrated in Fig. 1. Magnetic carrier beads 
with electrostatically attached toner particles are introduced 
into the vicinity of a rotatory sleeve with a stationary mag-
netic roller inside it. Carrier beads form chains on a sleeve 
by virtue of the magnetic field. Tips of chains touch a pho-
toreceptor surface at the development area and toner parti-
cles on chains move to electrostatic latent images on a pho-
toreceptor to form real images. Carrier chains play an im-
portant role in this development step. In order to realize 
high quality imaging, it is necessary to clarify the relation-
ship between static and dynamic characteristics of formed 
chains and design parameters, such as the magnetic flux 
density and properties of carriers. 

Statics of chains has been already investigated and it 
has been clarified how chain configuration is determined in 
the magnetic field.3 It is also important to clarify resonance 
frequency and stiffness of the chain in the magnetic field. 
Hard chains might cause a stripe image defect and on the 

other hand a "bead-carry-out" might take place if chains 
were too soft. In this study, following the static investiga-
tion,3 experimental, theoretical, and numerical investigations 
have been carried out on dynamics of the chain. 
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Figure 1.  Magnetic brush development system in a laser printer. 

Experimental Procedure 

Three experimental methods have been employed to meas-
ure the resonance frequency and to evaluate the stiffness of 
the chain. They are a sine-wave excitation method, an im-
pact test, and a static inclination method. 

Sine-Wave Excitation 
Figure 2 and Figure 3 show an experimental set-up and 

its photograph, respectively, to measure the resonance fre-
quency of the chain. A solenoid coil with carrier chains was 
mounted on a shaker (Shinken Co., G14-818), and vibration 
of chains was observed through a microscope camera 
(Keyence Corp., VH-7000). The coil was 55 turns of φ 0.5 
mm copper wire and the dimensions are φ 30 mm inner di-
ameter, φ 38 mm outer diameter, and 33.5 mm length. Five 
kinds of spherical carriers were used for experiments. These 
are soft magnetic material made by the polymerization 
method with 18, 35, 55, 88, and 107 µm in diameter, 
3500−3620 kg/m3 volume density, and 4.2−4.7 in relative 
magnetic permeability (Toda Kogyo Corp.). Photograph of 
one of them (107 µm in diameter) is shown in Fig. 4(a). 
Carrier beads were initially arranged at the center of a plas-
tic plate on a coil end in a φ 10 mm area. Axial magnetic 
flux density B' along the center axis of the coil was meas-
ured by a separate experiment and approximated by B'(z) = 
B0(1−cz), where B0 and c (= 66.87 1/m) are constants and z 
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(m) is the axial coordinate (z = 0 at the surface of the end 
plate on which carrier beads were mounted). B0 is propor-
tional to the coil current with a proportional constant 
0.00616 T/A. This approximation was confirmed by theo-
retical and FEM calculations. The coil was excited in two 
directions: one is axial and another is radial as shown in Fig. 
2. The shaker was operated with the sine wave and the fre-
quency was swept up and down from 10 to 90 Hz at 1.5 
Hz/s speed-up/down rate. 

The resonant frequency of bulk chains was not single 
but it distributed in a wide range, because characteristics of 
chains were not identical but bulk chains contained long and 
short, as shown in Fig. 4(b), and softly and hardly connected 
chains. This feature made the determination of the reso-
nance frequency very difficult. In this experiment, averaged 
values observed by four persons at three times were adopted 
as representatives. It should be emphasized that data con-
tained fairly large error. 
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Figure 2.  Experimental set-up of sine-wave excitation method to 
measure resonant frequency of bead chains in magnetic field. 
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Figure 3.  Photographs of experimental set-up of sine-wave excita-
tion method. 
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Figure 4.  (a) Magnetic carrier beads (107 µm diameter) and (b) 
chains in magnetic field (88 µm diameter, in 3 A field). 

Impact Test 
An impact method was also employed to determine the 

resonance frequency more exactly than the forced vibration 
method. A set-up is shown in Fig. 5. Free vibration response 
of bulk chains measured by a laser displacement meter 
(Keyence Corp., LK-2000) was introduced to an FFT ana-
lyzer and then the resonance frequency was specified. The 
solenoid coil and carrier particles are common with those 
used in the sine-wave excitation method. 
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Figure 5.  Experimental set-up of impact method to measure reso-
nance frequency of bead chains in magnetic field. 

Static Inclination Method 
Chains are not exactly directed parallel to the magnetic 

flux, if the flux inclines to the gravity.3 The static stiffness 
of the chain was estimated from chain inclinations in in-
clined magnetic fields. Fig. 6 is an experimental set-up to 
measure the inclination in the intentionally inclined field. 
The solenoid coil with bead chains was mounted on a θ-
stage and then slant angles of chains were measured by the 
microscope. The solenoid coil and carrier particles were also 
common with those used in the sine-wave excitation 
method. 
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Figure 6. Experimental set-up of static inclination method to 
evaluate static stiffness of bead chains in magnetic field. 

Experimental Results 

Axial Sine-Wave Excitation 
The axial sine-wave excitation experiment was con-

ducted under a condition of a constant magnitude (0.4 mm) 
of the shaker vibration. Although excitation acceleration ex-
ceeded 1 G (9.8 m/s2) over 25 Hz, chains did not break nor 
jump, because magnetic attractive force was larger than ax-
ial excitation force. Radial resonant vibration was observed 
even though chains were excited in the axial direction, be-
cause the excitation was not exactly axial but it contained a 
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radial component and chains were not perpendicular to the 
axial direction except at the center. Fig. 7 shows observed 
resonant frequency. Lower and upper limits of the vibration 
occurrence were cited 'lower' and 'upper,' respectively. Al-
though the resonant frequency laid in wide range and small 
hysteresis existed, it roughly suggested that the resonant fre-
quency did not depend on the magnetic flux density. Fig. 8 
shows a relationship between the particle size and the av-
eraged resonant frequency. The particle size also did not in-
fluence the resonance frequency. 
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Figure 7.  Resonant frequency measured by axial excitation 
method. (88 µm diameter, 0.05 g @ φ 10 mm) 
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Figure 8.  Relationship between particle size and resonant fre-
quency. (0.05 g @ φ 10 mm) 

 
Equivalent stiffness of the chain was evaluated from 

experimental data. The chain was assumed to be a cone 
shape and an equivalent mass of the chain mc was estimated 
from the measured chain length and bottom width. These 
are shown in Fig. 9. Bulk density of the chain was assumed 
to be 0.5 from a separate experiment. The equivalent stiff-
ness was calculated from mc(2πfn)

2 and shown in Fig. 10, 
where fn  is the measured resonant frequency shown in Fig. 
7. It is recognized form Fig. 10 that the stiffness of the chain 
was high in the high magnetic field. This is because the 
magnetic force between beads is high in the high magnetic 
field. However, because both the mass and the stiffness of 
the chain increase with the increase of the magnetic flux 
density, the resonance frequency is almost independent on 
the magnetic flux density. 
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Figure 9.  Characteristic sizes of chain. (88 mm diameter, 0.05 g 
@ φ 10 mm) 
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Figure 10.  Equivalent dynamic stiffness of chain. 

 

Radial Sine-Wave Excitation 
The radial sine-wave excitation experiment was con-

ducted under almost the same conditions except that a con-
stant acceleration (1−3 m/s2) scheme was employed. Meas-
ured resonant frequencies of the lower limit are shown in 
Fig. 11 and 12. Because the chain shifted laterally at high 
excitation frequency, the upper limit of the resonant fre-
quency could not be observed. Repulsive force between ad-
jacent chains4 is the cause of the lateral movement. In any 
case, although the resonant frequency was slightly de-
creased with the increase of the magnetic field and the parti-
cle diameter, the dependencies are small. These characteris-
tics agreed qualitatively with those of the axial excitation 
experiment. 

Equivalent stiffness of the chain was deduced with the 
same procedure described in the previous section. The result 
was added in Fig. 10. The estimated stiffness from the radial 
excitation was similar with that from the axial excitation. 
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Figure 11.  Lower limit of resonant frequency measured by radial 
excitation method. (88 µm diameter) 
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Figure 12.  Relationship between particle size and lower limit of 
resonant frequency. (average of 0.01 g and 0.03 g @ φ 10 mm) 

Free Vibration (Impact Test) 
Figure 13 shows an example of a free vibration re-

sponse by the impact method and Fig. 14 is a spectrum, an 
averaged value of 30 spectra measured at the same experi-
mental conditions. A spectrum without current passage is 
added in Fig. 14 to eliminate resonance frequencies without 
the magnetic field and to identify resonance frequencies of 
formed chains at a certain magnetic field. Fig. 15 summa-
rizes resonance frequencies as a parameter of the magnetic 
flux density (coil current), the bead diameter, and the parti-
cle weight to surface loading. It is clearly recognized that 
two major resonance frequencies, about 20 Hz and 60 Hz, 
exist and both are almost irreverent with the magnetic flux 
density, the bead diameter, and the particle weight to surface 
loading. Although the vibration modes are not clear, the ef-
fect of parameters coincided with results of the forced vibra-
tion method. 
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Figure 13.  Free vibration response of bulk chains. (3 A, 35 µm 
diameter, 0.05 g @ φ 10 mm) 
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Figure 14.  Spectrum of free vibration response of bulk chains. 
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Figure 15.  Resonance frequency of bulk chains in magnetic field. 

 
The equivalent stiffness of the chain was also deduced 

with the same procedure described in the axial excitation 
section and the result is added in Fig. 10. The averaged stiff-
ness from the impact test was good agreement with those 
from the axial and radial excitations. 

Static Inclination in Inclined Field 
Slant angle of the chain in the inclined magnetic field is 

shown in Fig. 16. It is clearly recognized that the chain an-
gle was enlarged by the gravity and it was larger than that of 
the magnetic flux. Although the chain was collapsed when 
the angle of the magnetic flux to the gravity was larger than 
a threshold, 50 degree in the case of Fig. 16, the chain angle 
was almost linear with respect to the flux angle. Fig. 17 is 
the rate of the increase in the angle, 100(φ−θ)/θ. The chain 
inclination was highly increased in the low magnetic field 
but it was almost parallel to the flux in the high magnetic 
field, more than 4 A coil current, because the chain became 
stiff in the high magnetic field. 

The static stiffness of the chain was calculated from 
these inclination data. The stiffness at the top of the chain k 
is determined from a momentum balance, if the chain is as-
sumed to be a line. 

θ
θ

πρ
sin

12
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c
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IS&T's NIP18: 2002 International Conference on Digital Printing Technologies

31



 

 

where ρ is the density of the carrier bead, g is the gravita-
tional constant, a is the diameter of the bead, θ is the angle 
of the magnetic flux to the gravity, and c is a proportional 
constant of the increase. The estimated stiffness is shown in 
Fig. 18. The stiffness is large in high magnetic field. This 
characteristic is common with that deduced from dynamics, 
however, two differences are evident between the dynamic 
stiffness summarized in Fig. 10 and the static stiffness in 
Fig. 18. One is a magnitude. The static stiffness was at least 
one order of magnitude smaller than the dynamic stiffness. 
One evident reason is that the static stiffness is defined at 
the top of the chain whereas the dynamic stiffness corre-
sponds to the lateral vibration and it was deduced from the 
simple total mass without taking account of a vibration 
mode. Another possible reason is that the static deflection 
includes that due to the rotation of beads although lateral de-
formation is major for the dynamic stiffness. Another differ-
ence between static and dynamic is the effect of the bead 
diameter. The static stiffness was highly dependent on the 
bead diameter. This is not the case for the dynamic stiffness. 
One possible reason is also the contribution of the bead rota-
tion in the case of the static deflection. 
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Figure 16.  Chain angle in inclined magnetic field. (2 A, 35 µm di-
ameter, 0.05 g @ φ 10 mm) 
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Figure 17.  Rate of increase in angle. (0.05 g @ φ 10 mm) 
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Figure 18.  Static stiffness at top of chain. 

Theoretical 

It is assumed that chain lengths are determined to minimize 
its total potential energy given by the sum of magnetic en-
ergy Um and gravitational energy Uk. 
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where N is a total number of beads and mbj is the mass of j-
th bead. The magnetic moment mj at the position of the j-th 
particle is 
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, (3) 

where µ0 is the magnetic permeability of free space and µ is 
the relative permeability of beads. The first term in the right 
hand side of Eq. (3) is due to the applied magnetic field by 
the coil and the second term is generated at the j-th bead by 
the field due to dipoles of other beads. Although the as-
sumption is not exactly right because the system is not a po-
tential but irreversible, it roughly approximates static chain 
formation in the magnetic field.3 Based on this concept it is 
also assumed, as a first order approximation, that the 
equivalent stiffness of the chain is proportional to the total 
potential energy per a bead. Fig. 19 shows the calculated 
relative resonance frequency, where beads are assumed to 
be connected along a straight line in vertical. Although the 
resonance frequency is not constant with respect to the 
magnetic flux density and the bead diameter, the dependen-
cies are small. 

Numerical Simulation 
Numerical Method 

Two-dimensional Distinct Element Method (DEM) was 
used in the numerical simulation of the dynamic behavior of 
the magnetically formed chain. In the calculation the mo-
mentum equations are solved with three degrees of freedom, 
(�, v, ϕ) for each bead j, where (u, v) are displacements in 
the Cartesian coordinates and ϕ is a rotational angle. In this 
study, mechanical interaction force and moment, Fc and Mc, 
the magnetic force and moment, F and M, air drag, and the 
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gravity are considered in the equations but the effect of roll-
ing friction and van der Waals force are neglected. 

6 , , ( , )cx F F x g xbj j j j bj j cj jm m I M M u vπη ϕ= + + + = + =�� � ��    (4) 

where I is an inertia of the particle and η is a viscosity. The 
mechanical interaction force is calculated by the Hertz’s 
formula. The magnetic force and the rotational moment of 
the j-th bead with the magnetic moment mj are given by the 
following expressions under the assumption that each bead 
behaves as a magnetic dipole placed at the center of the 
magnetized bead. 

( ) , .jF m B M m Bj j j j j= ⋅ ∇ = ×
    (5) 

The magnetic flux density Bj at the position of the j-th bead 
is 
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Although the actual chain was a cone or tower shape, a 
single row of beads was assumed in the calculation to evalu-
ate the effect of the magnetic flux density and the chain 
length separately. Calculation conditions are; Young’s 
modulus of beads = 10 GPa, Young’s modulus of plate = 
100 GPa, Poisson’s ratio = 0.3, and friction coefficient = 
0.2. Diameter, particle weight to surface loading, and mag-
netic permeability of beads were adjusted with the meas-
ured. 
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Figure 19.  Relative resonance frequency of chain in magnetic 
field based on the concept of potential energy minimization. 

Numerical Results 
A step force was applied to the chain and the response 

of the chain deformation was calculated. The bottom bead 
was fixed to the plate to prevent lateral shift of the chain and 
the magnitude of acceleration was adjusted not to break 
down the chain. One example of calculation was shown in 
Fig. 20 and 21. Fig. 20 is a time-step variation of the chain 
profile and Fig. 21 is the vibration response of the top bead. 
Because the bead row was assumed to be a line, a slope was 
highest at the lowest bead and therefore the mode of vibra-
tion was not exactly the same with that of the actual chain. 
The resonance frequency was 41.7 Hz in this case. 
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Figure 20.  Time variation of chain profile. (15 beads, 3 A, 1.7 
m/s2 acceleration) 
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Figure 21.  Horizontal displacement of top bead. Calculation con-
ditions are common with those of Figure 20. 

 
Parametric calculation was conducted to examine ef-

fects of the magnetic flux density and the bead length. Fig. 
22 shows vibration responses of 5-bead chain in 1, 2, and 3 
A coil-current fields and Fig. 23 is the deduced stiffness of 
the chain. Here, the total mass of the line chain was adapted 
to calculate the frequency. Since the chain for the calcula-
tion is not a tree shape but assumed to be the simple line, the 
magnitude of the deduced stiffness does not coincide with 
the measured shown in Fig. 10. However, it is qualitatively 
recognized that the frequency and therefore the stiffness be-
come higher in the higher magnetic flux density, if the num-
ber of beads is constant. 
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Figure 22.  Horizontal displacements of 5-bead chain in different 
magnetic field. 
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Figure 23.  Equivalent stiffness of 5-bead chain. 

 
The next calculation is to examine effect of bead length. 

Fig. 24 is vibration responses of chains that consist of 3, 5, 
and 7 beads in the common field (1 A coil current) and Fig. 
25 is the deduced stiffness. The frequency and therefore the 
stiffness are obviously low when the chain is long. 
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Figure 24.  Horizontal displacements of chains that consist of dif-
ferent number of beads in the common magnetic field. (1 A) 
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Figure 25.  Equivalent stiffness of chain in common field. (1 A) 

 
 
Combining two calculation results on the effect of the 

magnetic flux density and the chain length, we can deduce 
the resonance frequency of the chain that consists of a real-
istic number of beads based on the experimental result.3 Fig. 
26 shows the comparison of the calculated and measured 
resonance frequency. Numerical calculation was conducted 
with the half-length chain corresponding to those of Fig. 9 
to avoid dynamic break down of chain. This occurred be-

cause the single row of beads was assumed whereas the ac-
tual chain was the stable cone shape. In any case, the calcu-
lated resonance frequency is almost independent on the 
magnetic flux density. This qualitatively agrees with the 
measured and theoretical results. 

Finally, the dynamic stiffness was deduced and added 
in Fig. 10 to compare directly with measured. The calcu-
lated was the same order with dynamically measured results. 
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Figure 26.  Calculated and measured resonance frequency. (88 µm 
diameter) 

Concluding Remarks 

Experimental, theoretical, and numerical studies have been 
carried out on statics and dynamics of a magnetic bead 
chain in the magnetic filed to utilize for the improvement of 
the two-component magnetic blush development subsystem 
in electrophotography. The following were deduced from 
the investigation. 
(1)  The resonance frequency of the carrier bead chain was 

20−60 Hz and it was almost irrelevant with the mag-
netic flux density, the bead diameter, and particle 
weight to surface loading. 

(2)  The static stiffness at the top of the chain was 10−4−10−2 
N/m. It was large in the high magnetic field or for large 
diameter beads. 
 
Further investigation is being conducted on the meas-

urement of the static stiffness by a sophisticated method and 
three-dimensional DEM calculation for realistic cone-shape 
chains.5 
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