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Abstract
In this paper we present a resizing neural network for
edge and detail preserving image interpolation. The mul-
tilayer neural network is trained by using pairs of high
resolution and low resolution imagery. The high resolu-
tion is an 8-bit image scanned at 600 dpi. The low res-
olution image (300 dpi) is either a processed version of
the high resolution image, or it is scanned independently.
pixels are extracted from the low (high) resolution image
and are used as inputs to the neural networks. The inter-
polated pixels obtained as output are compared with the
high (low) resolution pixels after enhancement and the
error is used to train the neural network.

1. Introduction

Image interpolation is used for several purposes such as
picture and document resizing for display and printing,
image reconstruction, and geometrical distortions cor-
rection. In this paper, we will use image interpolation to
resize a digital copy. Digital copies are obtained using a
scanning device and then printed. This process involves a
variety of inherent factors that compromise image qual-
ity. Ordered halftone patterns in the original document
interact with the periodic sampling of the scanner, pro-
ducing objectionable moiré patterns. These are exacer-
bated when the copy is reprinted with an ordered halftone
pattern. In addition, limited scan resolution blurs edges,
degrading the appearance of detail such as text. Fine de-
tail also suffers from flare, caused by the reflection and
scattering of light from the scanner’s illumination source.
Flare blends together nearby colors, blurring the high-
frequency content of the document. A typical examples
of a scanned document is shown in Figure 1.

2. Data Interpolation

The interpolation problem, in its strict sense, may be
stated as follows [1]: Given a set of N different points:
{xi ∈ �m | i = 1, 2, .., N} and a corresponding set
of N real numbers: {di ∈ �n | i = 1, 2, .., N} find a
function F :

Figure 1: Examples of a scanned document at 300 dpi.

F : �m → �n | F (xi) = di, i = 1, 2, ..., N ,
(1)

where m and n are integers. The interpolation surface
is constrained to pass through all the data points. The
interpolation function can take the form:

F (x) =
N∑

i=1

wi φ (x, xi) , (2)

where {φ (x, xi) | i = 1, 2, ..., N} is a set of N
arbitrary functions known as the radial basis functions.
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Inserting the interpolation conditions, we obtain the fol-
lowing set of simultaneous linear equations for the un-
known coefficients (weights) of the expansion wi:
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· · · · ·
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φN1 φN2 · · φNN
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·
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·
·
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(3)

where

φji = φ(x, xi), j, i = 1, 2, ..N . (4)

Let the N × 1 vectors d and W be defined as

d = [d1,d2, ..., dN]t (5)

W = [w1,w2, ..., wN]t (6)

which represent the desired response vector and the lin-
ear weight vector, respectively. Let

Φ = {φi,j , i, j ∈ [1, N ]} (7)

denote the N × N interpolation matrix. Hence, equation
(3) can be rewritten as

ΦW = d . (8)

Provided that the data points are all distinct, the inter-
polation matrix Φ is positive definite [1]. Therefore, the
weight vector W can be obtained by

W = Φ−1 d , (9)

where Φ−1 is the inverse of the interpolation matrix Φ.
Theoretically speaking, a solution to the system in (9)
always exits. Practically, however, the matrix Φ can be
singular. In such cases, regularization theory can be used.
Here, the matrix Φ is perturbed to Φ + λI to assure posi-
tive definiteness [1].

Based on the interpolation matrix Φ different interpola-
tion techniques are available [2]-[7]. Some of these tech-
niques will be reviewed in next section.

3. Classical Interpolation Techniques

3.1. Spline Interpolation

Shepard formulated an explicit function for interpolat-
ing scattered data [2]. It is composed of a sum of radial
basis functions. The basis functions are radially symmet-
ric about the points at which the interpolating function is
evaluated. Conceptually, the method is simple to under-
stand in terms of a thin, deformable plate passing through
the data points collected off the surface of the object. The
thin plate spline radial basis functions are obtained from
the solution of minimizing the energy of the thin plate
constrained to pass through loads positioned at the cloud
data set. The modeling surface is constructed from the
radial basis functions βi(x, y) by expanding them in a
series of (n + 3) terms with ci coefficients:

S(x, y) =
n∑

i=1

ciβi(x, y), (10)

where the basis functions are given by

βi(x, y) = r2
i ln(ri). (11)

The modeling surface function S(x, y) has the form

S(x, y) = a0 + a1x + a2y +
n∑

i=1

cir
2
i ln(ri). (12)

The coefficients are determined by substituting the dis-
crete data set into and solving the resulting set of linear
equations:

n∑
i = 1

ci = 0, (13)

n∑
i = 1

xici = 0, (14)

n∑
i = 1

yici = 0, (15)

f(xi, yi) = a0 + a1x + a2y +
n∑

i = 1

cir
2
i ln(ri).

(16)

Bilinear and bicubic interpolation belong to the spline
general class of interpolation functions.
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3.2. Interpolation artifacts

Since the result of the interpolation process is only an
approximation, one should expect artifacts. Those has
been classified into four categories called ringing, alias-
ing, blocking, and blurring.

Ringing arises because most synthesis functions are os-
cillating. Aliasing is related to the discrete nature of the
data. When it is desired to represent a coarser version of
the image using fewer samples, the optimal procedure is
first to create a piecewise representation of the coarse im-
age using every available sample, and then downsample
the coarse representation. Typical visual signatures of
aliasing are moiré effects and the loss of texture. Block-
ing arises when the support of the interpolant is finite. In
this case, the influence of any given pixel is limited to its
surroundings. Nearest-neighbor methods exacerbate this
effect. Blurring arises from the averaging process and the
inclusion of edge pixels in the interpolation procedure.

Bicubic interpolation [4] provides a reasonably simple
but effective method for enlarging many images. Transi-
tions between expanded pixels remain smooth, and edge
content is preserved better than with bilinear interpola-
tion. Nevertheless, detail in document images remains
overly blurry, even with bicubic interpolation. As shown
in Figure 2, the resulting document image generally suf-
fers from objectionable edge blurring and aliasing.

Rather than trying increasingly complex interpolation al-
gorithms, we propose to use a multi-layer neural network
as an image interpolator with enhancement capabilities.

4. Neural Network as Universal
Approximator

Although classification is a very important form of neu-
ral computation, neural networks can also be used to find
an approximation of a multivariable function F (x) [8].
This may be approached through a supervised training
of an input-output mapping from a data set. The learning
proceeds as a sequence of iterative weight adjustments
until a weight vector is found that satisfies certain crite-
ria.

In a more formal approach, multilayer networks can be
used to map �n into � by using P examples of the func-
tion F (x) to be approximated by performing nonlinear
mapping with continuous neurons in the first layer then
computing the linear combination by the single node of
the output layer as follows:

Figure 2: Result of applying a smoothing function to remove
noise, followed by bicubic interpolation. The resulting docu-
ment image suffers from edge blurring and aliasing.

y = Γ[ VX ] (17)

O = Wty (18)

where V and W are the weight matrices for hidden and
output layer respectively, and Γ[·] is a diagonal operator
matrix consisting of nonlinear squashing functions φ(·)

Γ =




φ(·) 0 0 · 0
0 φ(·) 0 · 0
· · · · ·
0 · · · φ(·)


 (19)

A function φ(·) : � → [0, 1] is a squashing function if:

1. It is nondecreasing,

2. limλ→∞ φ(λ) = 1,

3. limλ→−∞ φ(λ) = 0.
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Here we have used a bipolar squashing function of the
form

φ (x) =
2

1 + e−λx
− 1. (20)

The studies of Funanashi [10], Hornik, and Stinchcombe
[9] prove that multilayer feedforward networks perform
as a class of universal approximators. Although the con-
cept of nonlinear mapping, followed by linear mapping,
pervasively demonstrates the approximating potential of
neural networks, the majority of the reported studies have
dealt with the second layer also providing the nonlinear
mapping [8]-[9]. The general network architecture per-
forming the nested nonlinear scheme consists of a single
hidden layer and a single output O such that

O = Γ(WΓ[VX]). (21)

This standard class of neural networks architecture can
approximate virtually any multivariable function of inter-
est provided that a sufficient number of hidden neurons
is available.

4.1. Approximation Using Multilayer Networks

A two-layer network was used for surface approxima-
tion. The x and y coordinates of the data points were the
input to the network, while the function value F (x, y)
was the desired response d.

The learning algorithm applied was error back propaga-
tion. This technique calculates an error signal at the out-
put layer and uses this signal to adjust network weights in
the direction of the negative gradient descent of the net-
work error E so that, for a network with I neurons in the
input layer, J neurons in the hidden layer,and K neurons
the output layer, the weight adjustment is as follows:

∆wkj = − η
∂E

∂wkj
, k = 1, 2, ...,K j = 1, 2, ..J

(22)

∆vji = − η
∂E

∂vji
, j = 1, 2, ..., J i = 1, 2, ..I (23)

where

E =
1
2

K∑
k=1

(dk −Ok)2. (24)

The size J of the hidden layer is one of the most impor-
tant considerations when solving actual problems using

multilayer feedforward networks. The problem of the
size choice is under intensive study with no conclusive
answers available thus far for most tasks. The exact anal-
ysis of the issue is rather difficult because of the com-
plexity of the network mapping and due to the nondeter-
ministic nature of many successfully completed training
procedures [8]. Here, we tested the network using differ-
ent numbers of hidden neurons. The degree of accuracy
reflected by the mean square error was chosen to be 0.05.
Results are provided later in the paper.

5. Results and Conclusions

We tested our algorithm with several images scanned at
300 and 600 dpi. The multilayer neural network is trained
by using pairs of high resolution and low resolution im-
agery. The high resolution is an 8-bit image scanned at
600 dpi. The low resolution image (300 dpi) is either a
processed version of the high resolution image, or it is
scanned independently. pixels are extracted from the low
(high) resolution image and are used as inputs to the neu-
ral networks. The interpolated pixels obtained as output
are compared with the high (low) resolution pixels after
enhancement and the error is used to train the neural net-
work. Results are shown in Figure 3. The neural network
was successfully trained to perform the role of image in-
terpolation and enhancement in the same step.
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Figure 3: Enlarged and enhanced document using multi-layer
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