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Abstract
Charge carrier transport in materials containing static char-
ges is considered within the framework of the 1D transport
model. We show that the mobility dependence on tempera-
ture and concentration of charged traps in infinite medium
differs drastically from the prediction of the model of iso-
lated charged trap (Poole-Frenkel model). We argue that
for transport layer with finite thickness the Poole-Frenkel
model can be applied only in the case of very low concen-
tration of static charged centers, thus producing a negligi-
ble effect on the mobility field dependence.

1. Introduction

In recent years a significant attention has been paid to ex-
perimental and theoretical study of charge carrier transport
in disordered organic materials.1−3 Quite frequently, ex-
perimental results were discussed in terms of the Poole-
Frenkel (PF) model of trap-controlled transport with the
attractive Coulomb centres serving as traps. If an external
uniform electric field E is applied, then the total potential
energy of the carrier in a trap is

U(�r) = −e �E · �r − e2

εr
, (1)

where ε is a dielectric constant of the medium. Electric
field leads to the decrease of the activation energy for the
carrier release from the trap

δUact = 2
(
e3E

ε

)1/2

, (2)

thus leading to the estimation for the carrier mean velocity

〈v〉 ∝ 1
c

exp (δUact/kT ) =
1
c

exp
(
γ
√
E

)
, (3)

where γ = 2
kT

(
e3

ε

)1/2

and c is the concentration of traps.

Early experimental data suggested that mobility µ =
〈v〉 /E dependence on E and T may be described by the

empirical relation4

µ = µ0 exp
[
γ̃

(
1
T

− 1
T0

) (√
E −

√
E0

)]
, (4)

where T0 and E0 are some constants. Equation (4) nat-
urally supports an idea of the PF mechanism for the mo-
bility field dependence. Magnitude of the PF coefficient
γ in (3) is usually close to the experimental one, though
discrepancies of 2-3 times are typical.5 Yet for a long time
the PF model has been rejected as a valid model of charge
transport in organic materials. The main reason for the re-
jection is the absence of charged traps in such materials
in a noticeable concentration.5 Recently the PF model was
revitalized by Rackovsky and Scher.6 They argued that a
very low density of Coulomb traps is enough to produce
an essentially nondispersive PF charge transport (they es-
timated that 1011-1013 cm−3 should be a sufficient density
for transport layer with the thickness of 10 µm). Because
such low density can easily avoid detection, they suggested
that the PF model still can be considered as the true model
of the charge transport in disordered organic materials.

Calculation of the PF effect6 was carried out for the
usual case of an isolated Coulomb trap only. In this paper
we are going to overcome a scope of an isolated Coulomb
trap and present an explicit model of charge carrier trans-
port in charged medium. We will see that the result is in
drastic contrast with the case of an isolated Coulomb trap.

2. 1D model of charge transport

Let us consider the 1D diffusion of a single carrier in a
random energy landscape U(z) along the direction of the
electric field. In this case7

〈v〉 =
D∫ ∞

0
dz exp(−eβEz)W (z)

, (5)

where W (z) = 〈exp {β [U(z) − U(0)]}〉, D is a carrier
diffusion coefficient, β = 1/kT , and angular brackets de-
note statistical averaging.
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We consider a potential energy of positively charged
carrier (a hole) in a random environment of static charges
(located at the sites of regular cubic lattice with the scale
a)

U(�r) =
∑
m

ηmf(�r, �rm). (6)

Here source function f(�r, �rm) gives a contribution from
the particular source to the total sum (6). Summation in (6)
is performed over all lattice points and ηm = 1 if a posi-
tive charge is located at the sitem, ηm = −1 for a negative
charge, and ηm = 0 for the empty site. To avoid unneces-
sary complications, we consider here the simplest case of
macroscopically neutral infinite medium with c+ = c− =
c, where c+ and c− are fractions of sites occupied by pos-
itive and negative charges, correspondingly, f(�r, �rm) =
e2/ε|�r − �rm|, and

lnW (z) = h3
aG(x0, c),

G(x0, c) =
∫
d�x ln [1 + 2c (coshA− 1)] , (7)

A =
1
x
− 1

|�x− �x0|
, �x0 =

ε�z

e2β
, ha =

e2β

εa
.

Parameter ha is large in a typical situation (ha = 20 − 25
for a ≈ 1 nm at room temperature). We present result
of calculation of (8) for the most interesting case c � 1
and c expha � 1 (details of calculation will be published
elsewhere)

G(x0, c) 
 G1 +G2 +G3, (8)

G1 =
4π

3(ln c)2
+

8π
3x0(ln c)3

. (9)

G2 ≈ 8π
(ln c)4

(
1 − 1

x0

)
, G3 ≈ 4πcx0. (10)

Note the special role of the term G3: it effectively renor-
malizes electric field to the value Eeff = E − Ecr, Ecr =
4πcβe3/ε2a3. If E < Ecr, then a nondispersive carrier
motion across the transport layer when 〈v〉 does not de-
pend on L is not possible. This phenomenon was already
reported.8 For the reasonable range of c = 10−8 − 10−6

term G1 plays a major role.
In the case of strong disorder

µ ∝ exp
[
−P (c, β) + 2(eaβEQ)1/2

]
(11)

P (c, β) =
4πh3

a

3(ln c)2
, Q(c, β) = − 8πh4

a

3(ln c)3

(here we neglect the difference between E and Eeff ). We
see that a quasi-PF (qPF) mobility dependence indeed arises
in the charged medium. For comparison, one can see the
result of the numerical calculation of µ(E) in figure 1.
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Figure 1: Mobility field dependence calculated by numerical
evaluation of W (z). Mobility curve are calculated using (5) for
ha = 20 and following values of c (from the top curve down-
wards): 3× 10−9, 1× 10−8, 3× 10−8, 1× 10−7, 3× 10−7,and
1 × 10−6, correspondingly, and µ0 = eβD. For room tempera-
ture and a = 1 nm eaβE = 1 for E ≈ 2.5 × 105 V/cm.

The best test of the validity of equation (11) is to study
the dependence of slope S and intercept I of the mobility
field dependence lnµ vs (eaβE)1/2 on c and T

I(c, β)
ha

=
P (c, β)
ha

=
4π
3
Z2, (12)

S2(c, β)
ha

= 4
Q(c, β)
ha

=
32π
3
Z3, Z = −ha/ ln c.

Thus, I/ha and S2/ha are functions of the universal pa-
rameter Z only and this fact is in a reasonable agreement
with the result of numerical calculation (see figures 2,3).
Slope of I/ha vs Z2 plot should be 4π/3 ≈ 4.2. Calcu-
lated slope equals to 4.1. Slope of S2/ha vsZ3 plot should
be 32π/3 ≈ 33.5. the calculated one equals to 35.3, so we
have a reasonable agreement.

3. Transport layer with finite thickness

Why does the qPF regime (11) differ so significantly from
the PF regime (3)? Why does the isolated trap approxi-
mation fail to capture mobility dependence on T and c?
The answer is that this approximation cannot be applied
to the case of charged traps because of the long range of
the Coulomb potential. For example, in the case of infinite
medium

〈
U2

〉
diverges because of the contribution from
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Figure 2: Dependence of the slope of the mobility field curve,
calculated by numerical evaluation of (5), on the universal pa-
rameter Z = −ha/ ln c. Data points are calculated for 6 dif-
ferent values of c spanning a range from 3 × 10−9 to 1 × 10−6.
Parameter ha spans the range from 14 to 40.
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Figure 3: Dependence of the intercept of the mobility field curve
on the universal parameter Z = −ha/ ln c. Parameters are the
same as in figure 2.

large distances; it is a clear indication of huge collective
fluctuations of the carrier potential energy in the charged
medium. For this reason it’s impossible to write the carrier
energy in the form (1) and the case of isolated trap and the
case of uniformly charged medium for c → 0 are princi-
pally different for an infinite medium.

What has happened in the case of finite medium (a
slab of organic material with the thickness L containing
static charges and bounded by conducting electrodes)? In
this case the distribution of U(�r) is not a uniform random
field even for uniform distribution of static charges,9 our
basic equation (5) is not valid anymore, and the calcula-
tion of transport properties of the device is a much more
formidable task. Here we note only some simple estima-
tions. For a finite L a variance of U(�r) is9

σ2(z) =
8πe4c
ε2a3L

z(L− z). (13)

We should expect that a particular domain inside the trans-
port layer located at z contributes to the isolated trap PF
regime if a fluctuation contribution to the carrier total po-
tential energy is much smaller than the decrease of the ac-
tivation energy, e.g. σ(z) � δUact, or

c� E

Ei

aL

2πz(L− z)
, Ei = e/εa2. (14)

For typical materials Ei = 5 × 106 − 1 × 107 V/cm, so
for E = 1 × 104 V/cm in the bulk of the transport layer at
z ≈ L/2 for L = 10 µm and a = 1 nm we have c� 10−7

or n� 1014 cm−3.
At the first glance, our estimation is in perfect agree-

ment with the idea of Rackovsky and Scher6 that the PF-
like mobility field dependence in disordered organic mate-
rials is delivered by very small concentration of charged
traps. More careful analysis reveals, however, that the
model of finite charged slab for c ≤ 10−8 can hardly repro-
duce experimental mobility dependence. Indeed, increase
of the magnitude of the disorder leads both to the increase
of the mobility variation with the variation of the electric
field strength and broadening of the field region where mo-
bility significantly depends on E. For this reason we could
expect that the mobility curve for a finite slab, where the
magnitude of disorder is decreased in comparison to the
infinite case (variance (13) is finite), should be located ex-
actly between the corresponding curve for an infinity layer
and the limit line µ(E) = µ0. Figure 1 indicates that for
c ≤ 10−8 there is no possibility for such mobility field
dependence to vary significantly in a field range up to 106

V/cm.
Rackovsky and Scher reasonably suggested that a min-

imum of N ≈ 10 − 50 encounters with traps is enough
for establishing of non-dispersive regime,6 and then esti-
mated the necessary density as n ≈ (N/L)3. This es-
timation seems to be too optimistic in the case of strong
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electric field E = 2 × 106 V/cm.5 Here we should expect
a quasi-1D carrier motion with the minimal re-trapping at
the same site. Carrier effectively interacts with traps lo-
cated in the domain having volume V ∝ Lr2Ons, where
rOns = e2/εkT is an Onsager radius, so n ≈ N/Lr2Ons ≈
1015−1016 cm−3 at room temperature, which is several or-
ders of magnitude greater than the estimation suggested by
Rackovsky and Scher6 and does not agree with the equa-
tion (14). For such high trap density the PF regime should
be transformed to the qPF regime (11).

Microscopically charged medium with c+ �= c− im-
poses even more severe limitation on the density of static
charges than equation (14). Using methods, developed in
Ref. 9, it is easy to calculate an average carrier energy in
the uniformly charged transport layer bounded by conduct-
ing electrodes

〈U(z)〉 =
2πe2cd
εa3

z(L− z), cd = c+ − c−. (15)

Such layer serves as a potential well (or a barrier, depend-
ing on the sign of cd) for a carrier with the depth (height)
which depends on L

Umax = 〈U(L/2)〉 =
πe2cdL

2

2εa3
. (16)

Non-dispersive transport could be observed if Umax/kT ≤
1, or cd/a3 ≤ 1011 − 1012 cm−3 for L ≈ 10 µm.

For these reasons we believe that the model of isolated
charged traps may be applied only to the case of extremely
small density of charged traps, where the macroscopic car-
rier mobility very weakly depends on the electric field.

4. Conclusion

The PF-like behaviour of the mobility in charged medium
differs significantly from the prediction of the model of
isolated Coulomb trap. Slope and intercept of the mobil-
ity dependence increase with the increase of concentration
of charged traps, and at room temperature increase of c by
the order of magnitude from 1×10−7 to 1×10−6 leads to
the decrease of the mobility by 10 orders of magnitude, in
agreement with previous numerical results.8 For 3D trans-
port we should expect a weaker dependence on c because
in all known cases (e.g. for charge transport in dipolar10 or
quadrupolar11 glasses) results of 3D computer simulation
suggest that the 1D model essentially retains the true func-
tional dependence of the mobility on relevant parameters,
but overestimates numeric coefficients in the exponent of
(11) by a factor of 2-3. Still, decrease of the mobility by
three orders of magnitude seems to be possible.

Experimental test of the mobility dependence on the
concentration of charged traps should be the best test of
the result (11). By now there are no experimental data on

this dependence. Nonetheless, in charged medium the pre-
dicted temperature dependence I ∝ T−3 and S ∝ T−5/2

(for a plot of lnµ vs E1/2) seems to be too strong to de-
scribe existing experimental data.

There is still a possibility that the charge mobility af-
fected by the influence of static charges has been observed
in experiments. A well known phenomenon is the so-called
problem of the first pulse in a time-of-flight method of the
mobility measurement, where carriers are generated by the
action of laser pulse and then drift across a sample under
the action of applied voltage. Quite frequently, parame-
ters of the photocurrent transient obtained for a very first
laser pulse immediately after preparation of the transport
sample differ significantly from the corresponding param-
eters, obtained for all subsequent pulses. We can speculate
that a very low density of static charges may be present
in the sample, but after the first packet of charge carriers
sweeps across the sample they are effectively neutralized.
Of course, there are other possible explanations. Yet we
believe that parameters of the transient obtained for a very
first laser pulse deserve careful examination.
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