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Abstract 

As xerography moves to intercept offset printing, image 
quality becomes a key ingredient of success. Classic 
halftoning methods, which generally deliver good, low 
noise halftone dots, have fixed positions in the scan field 
that hinder several possible improvements to these printing 
systems. 

First, exact halftone frequencies and angles would 
result if dot positions could be adjusted with arbitrary 
precision. This would improve the design of screen-sets that 
limit or reduce multiseparation moiré, or allow screen-sets 
that exhibit the classic rosette structure associated with 
offset printing. 

Second, electronic registration systems could emerge if 
the halftone dot positions could be adjusted in response to 
actuation commands from the printer. Such systems would 
automatically compensate for mechanical distortions caused 
by bent mirrors, elliptical rollers, and tandem color print 
stations, for instance, and thus save manufacturing costs for 
the mechanical system. 

Normally, the dot positions are fixed to small integer 
offsets (the angle corresponds to a “rational tangent”) in the 
scan field, thus preventing the occurrence of single 
separation moiré. When fractional dot positions are allowed 
(irrational tangent), moiré can result. Thus, if the moiré 
problem can be eliminated for irrational halftoning, the 
frequency and angle restrictions associated with rational 
tangent halftoning disappear. 

I will present one solution to this problem that sub-
samples a halftone cluster function stored in a look-up table 
to produce reduced moiré separations while printing. 
Halftone dot locations are computed by hardware, and dot 
cluster shapes typically do not repeat. I will show a 
simulation of a three-separation image printed on a 600 spi 
digital printer that uses irrational offsets (m30°, c75°, and 
k45°) designed to produce a classic rosette structure. I will 
also show a simulation of these same dots being 
electronically registered, or warped. 

Introduction 

Xerography has several differences from offset printing that 
can be used to leverage a foothold into the high quality 
offset market. Since it is evolving from the low end of the 
market, it is characterized by lower resolution. Lower 
resolution is both an impediment to high quality and a 

benefit to high speed printing. If the quality could be 
improved without increasing the resolution, its speed 
advantage could be leveraged against offset. 

Another major difference is that xerographic prints are 
made just in time, as opposed to being made in advance, as 
in offset plates. Just in time printing is burdened with the 
cost of fast real-time processing, but privileged by the 
opportunity of variable data per page and thus economical 
single copies of books and magazines. This could open up a 
new and potentially lucrative market that offset has been 
unable to enter. 

Fast real time processing and quality at low resolution 
are therefore key enablers for a xerographic push into 
traditional and new offset markets. It’s apparent that the 
former obstacle is becoming moot as processors speed past 
1Ghz clock rates, memory prices plummet, and software 
rips evolve into multi-threaded imaging pipelines with 
hardware accelerators. 

The most difficult problem for xerography to address is 
therefore the low resolution quality issue. Clearly, offset has 
the quality advantage with their massive and costly 
hardware, high speed and well tuned presses that can hold 
registration to within very close tolerances, using plate sets 
that are both repeatable and stable over time. 

The quality issue for xerography would not be so bad if 
only one separation were required. Toners, development 
systems, fast lasers, and image processing have been 
perfected to offer very good monochrome performance. 
However, registration problems are encountered when two 
or more color separations are poorly overlaid. 

Registration is important in offset color reproduction, 
being even more critical than tone reproduction or gray and 
color balance.1 Multiseparation misregistration is therefore a 
more daunting problem for high speed xerographic printers, 
because the need for speed requires multiple print stations, 
each with differing registration characteristics. Distortions 
to images coming from scan line bow, scan non-linearity, 
process velocity variations, photoreceptor belt thickness 
variations, job cycling, thermal, and other considerations 
conspire to degrade quality. 

This paper will examine the opportunity of using 
computation to deform images to match known or measured 
imperfections of the printer and print stations during 
printing, thereby canceling registration imperfections 
between separations. Referred to as electronic registration, 
the cost of moving electrons in images during printing is 
postulated to be much less than the costs of positioning 

NIP17: International Conference on Digital Printing Technologies

477



 

 

atoms of massive hardware “iron” with precision 
manufacturing to achieve perfect cams, mirrors, belts and 
drums. 

There are two image components that make up a single 
separation, a data layer, and an underlying halftone layer 
that is the carrier for the data. Both of these layers are based 
upon regular arrays of data, and both are subject to 
electronic registration, or “warping”. The same data used to 
warp one can be used to warp the other because the goal is 
to warp both by equal amounts. This paper will focus on the 
more difficult task of warping a halftone grid without 
incurring too large a moiré penalty. 

In order to warp a halftone grid, it is necessary to 
change the way halftoning is done. Whereas threshold 
arrays are typically used to make halftones, a different and 
more general way is presented here that allows the 
deformation of the halftone grid. This method is called 
irrational halftoning2. 

Threshold Arrays 

Traditionally, cluster halftone dot generators have consisted 
of small, rectangular-shaped memory threshold arrays that 
are tiled over an image to produce dots of various sizes. The 
contents of the array is continuously compared with 
incoming image data, generating halftone dot subpixels for 
all values of incoming image data that are above or equal to 
the threshold. The thresholds are arranged inside the array 
to allow a single halftone dot to grow larger in a 
predetermined pattern, often clustered, as input data 
ascends. 

Threshold arrays have several advantageous 
characteristics. They are inherently simple, and require little 
computation for operation in either hardware of software. 
They utilize memory efficiently, requiring only a single 
eight-bit threshold value for each memory element. The 
array area spans at least one halftone dot and its memory 
elements are generally accessed in a raster-style pattern, 
sometimes altered to stack like bricks. 

Threshold arrays are very good at efficiently producing 
rational halftone dots. As the rectangular array tiles an 
image, the angle of the resulting dot grid is controlled by the 
tangent of numbers based on the array’s vertical and 
horizontal dimensions. Clearly, there are a very limited 
number of these available angles. For instance, if an angle 
of 30.00° were desired, the arc tangent of four over seven 
provides an angle of about 29.75°. This is not very close for 
multiseparation halftoning, and allows no choice at all for 
the frequency of the dot, which is determined by the length 
of the hypotenuse of the resulting 4.00 – 7.00 – 8.06 right 
triangle.  

The need to produce halftone dots with greater 
accuracy in their screen frequency and angle has led to the 
use of the super cell3. This concept allows more possible 
frequencies and angles by tiling multiple halftone dots side-
by-side in a larger threshold array, the larger array size not 
being an exact multiple of the size of the single-dot array. 
Thus, each dot of the super cell will be slightly different to 

accommodate the new and heretofore unobtainable 
frequency or angle. The need for ever more accurate screens 
has multiplied the amount of memory required by the 
supercell array so that the memory-size advantage is 
compromised, but even then the accuracy required to 
achieve the exact required frequency and angle is generally 
deficient. Furthermore, they are just as un-warpable as the 
single cell arrays.  

The presence of a single threshold value in the array 
presupposes that once a subpixel is turned on, it stays on as 
the image data ascends. This assumption saves a great deal 
of memory, but restricts flexibility. For instance, it does not 
allow for halftone dot modification at midtone, where dot 
gain performance could be improved by altering the shape 
of the halftone dot to avoid unnecessary contact with its 
neighbors. Clearly, multiple thresholds could be provided 
with appropriate complexity, but this assumes that there is 
an overriding need to save memory. 

Three Dimensional Look-up Table 

The method of making halftone dots presented in this paper 
favors a three dimensional memory array approach. 
Thresholds and comparisons are eliminated in favor of 
direct look-up for each image intensity value. Thus, 
memory size is sacrificed in favor of total output flexibility4. 

The key difference, the one that enables irrational 
and/or warping performance, however, is that adjacent pixel 
values on the printed image are not adjacent in the halftone 
memory as they are in a classic threshold array. Instead, 
memory accesses span multiple memory locations, and do 
so with fractional precision. 

The contents of the memory must therefore be loaded 
with a cluster function that presupposes the desired 
frequency and angle. In essence, many possible halftone 
dots for a given frequency and angle are superimposed into 
a single discrete function that is sub-sampled at a constant 
frequency and angle. Warping is enabled when the 
frequencies and angles are allowed to vary by small 
amounts from the constant. 

 

Figure 1. 3-d Halftoner 

 
Consider the halftone generator of Figure 1, that is 

made up of a square array of memory elements, perhaps 32 
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on a side. Consider further that there are 256 of these arrays, 
one for each individual intensity level for a halftone dot. 

The contents of each memory element are accessed 
through two orthogonal address generators called 
accumulators, which track the a,b coordinates of the 
samples. At each clock or each new scan, the contents of the 
accumulators are updated to step through the halftone 
memory at some frequency and angle. Modulo arithmetic, 
in this case mod 32, is used to confine the addresses inside 
the memory during updates, thus tiling the halftone dot over 
the image. 

Figure 2 shows a grid of samples (x’s), each row a part 
of a separate scan generated for that particular halftone dot. 
Sample locations are quantized to the nearest memory 
element, but the fractional precision is not discarded. 

 

Figure 2. Sample grid & scan boundaries. 

 
The “a” direction is shown along one axis of the 

halftoner; the “b” direction along the other. This a,b 
halftone coordinate system is then rotated and scaled with 
respect to the scanning and data space, identified in Figure 3 
as the x,y space. The “x” coordinate is the clock sequence 
number from the start of scan, and “y” is the scan number 
counted from the top of the image. 

 

Figure 3. Sample window with 4 adu’s. 

 
The halftone dot sample position is therefore a function 

of x and y. The following equations give the halftone dot 
sample position in terms of memory address, with arbitrary 
precision, for each accumulator a and b: 

( ) ( )( )[ ]mPyAS
mFxAC

mF
yxa ,90coscosmod, +⋅°−⋅+⋅⋅=  (1) 

( ) ( )( )[ ]mPyAS
mFxAC

mF
yxb ,90sinsinmod, +⋅°−⋅+⋅⋅=  (2) 

F, A and P are the halftone frequency, angle, and phase, 
respectively, C and S are the clock and scan spatial 
frequency, respectively, and m is the modulus. For the 
example presented in this paper: 

 
F = 141.000 dpi 
A = 42.000° 
P = 0; range 0 to m 
C = 1200 memory references per inch 
S = 600 scans per inch 
m = 32 
 
The accumulators generate a sample grid at a precise 

frequency and angle while maintaining fractional precision. 
Hence, an angle of 30 degrees, which corresponds to 31 , 
is held with as much precision as desired by the number of 
bits in the accumulators. Generally, the sampling grid is 
stationary, but for warping the sampling locations can be 
allowed to vary in small amounts without recomputing the 
table contents. 

Moiré Considerations 

Each memory element of the array of 1024 elements 
contains four bits that represent a set of high addressability 
units (adu’s), in this case four, that sub-divide the fast scan 
direction into 4800 units per inch. Assume that the output 
device is at 600 scans per inch, and that the clock is 
sampling the halftone array at 1200 samples per inch. 
Figure 3 shows the four adu’s, which form a sample 
window, and their relative size with respect to the halftoner 
array for a halftone dot with an angle of 42 degrees, and a 
frequency of 141 dpi. The sample window has been rotated 
and scaled so that it will exactly tile the plane with no 
overlaps when centered on the (unquantized) sample grid 
locations. 

Clearly, for irrational angles and frequencies, the center 
of each individual halftone dot can have any positional 
relationship whatsoever with the sample grid. In particular, 
the dot could be shifted in the clock direction x by any 
amount up to the width of a single addressability unit, or 
1/4800 of an inch. After that, the shift repeats. For the x 
direction this shift is small, and therefore quantization errors 
to the nearest adu center are not very noticeable in terms of 
moiré. 

In the scan direction y, the situation is very different. 
The shift only repeats after each scan, or 1/600 of an inch. 
As the scan field gradually changes its dot phase in the y 
direction while traversing adjacent halftone dots, the 
overlap of the dots on the scan field boundaries also 
changes. Quantization errors of this magnitude are much 
more noticeable. This uncompensated change in overlap can 
be a major cause of scan-field moiré, or auto-moiré. Auto 
moiré can be thought of as the dot grid beating with the scan 
field, as opposed to multiseparation moiré, where the dot 
grids beat (overlap) with each other. 
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Clustering the Halftone Dot Function 

Clustering the halftone dot function will partially compen-
sate for auto moiré. Figure 4 shows a possible halftone dot 
function that has been chosen for its growth pattern that will 
be used to produce the clustered dot file. The contour plot in 
the lower left corner shows the function from the point of 
view of the clustering algorithm. A threshold is set for the 
clustering algorithm, which generates the shape shown in 
the next two figures. Points in the a,b field can be 
determined to be inside or outside the shape by determining 
if they are above or below the threshold. 

 

 
Figure 4. 

 
Figure 5. 3 adu’s turned on. 

 
The center of the sample window is then positioned at 

the center of each memory location. Snapping to the center 
of a memory location is a source of quantization error 
because irrational sample grid locations will typically never 
coincide with the memory cell center. This quantization 
error can be made smaller by enlarging the memory array 
size beyond 32 x 32. The sample window is repeatedly 
positioned at the center of each of the 1024 memory 
locations, and this is repeated for all 256 intensities in the 
table. 

Figure 5 shows a simple case where the sample window 
of Figure 3 has been positioned over one of the memory 
locations. The window traverses an edge that is more or less 

parallel with the long direction of the addressability units. In 
this case, it is relatively simple to determine how many of 
the four adu’s should be turned on for the current position 
of the sample window. 

An integration within the sample window is performed 
at the thirty-two interior points. More points can be used to 
reduce the integration error. The resulting count is used to 
fill the window one adu at a time, with eight points per adu. 
In this case, three adu’s will be turned on, this result will be 
stored in the memory location at the center of the sample 
window. 

Figure 6 shows the more difficult case where the 
sample window (upper right) has enough inside points to 
turn on one adu, but doing so would not be correct to 
produce clustered halftones. The problem is thus: As the 
function is scanned in the x direction, the data must be 
turned on for just the right amount of time to reproduce the 
overlap of the halftone dot shape into the current scan field. 
This overlap area often takes the form of an arc, and can be 
longer and narrower than the width of the scan field which 
is 1/600 inch. Since the full width of the scan field is always 
exposed, the arc area must be integrated and reshaped to 
form a rectangular cluster of a full scan field width, but with 
the same area as the overlap. This makes it shorter. Finally, 
the shortened cluster must be positioned at the center of 
gravity of the overlap, which can be some distance from the 
current sample window. 

 
Figure 6. No adu’s turned on. 

 
The problem is solved by expanding the sample 

window until both ends of the arc exits either the top or the 
bottom of the rectangular integration window, as it also 
does in Figure 5 without expansion. Integration is 
performed, and the center of gravity of the arc is 
determined. The integration count is used to fill up phantom 
adu’s, starting at the center of gravity, working outward, as 
shown by the dark gray patch. Any intrusion of the dark 
gray patch into the original sample window at the upper 
right is recorded. In this case, there is none, so the memory 
location at the center of the sample window will be loaded 
with values that indicate all four adu’s in the off state. 
Depending on the path of the arc through the extended 
integration window, this center fill technique can be 
supplemented with left fill, right fill or split fill. This 
process is repeated for each of the 1024 memory locations, 
creating the cluster function. 
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Figures 7a, 7b, and 7c show the clustered dot function 
computed for a particular level. The dot function shown is 
the same for all 3 phases, and the sampling grid has been 
adjusted to sample the function at three different y phases. 
The resulting halftone dot, shown at the right in all three 
figures, can be read directly by the reader from the points 
where the sample grid land in the clustered dot function. 

 

 
Figure 7a, y Phase is 0  

 
Figure 7b, y Phase is 1/3  

Figure 7c, y Phase is 2/3  

Rosettes and Warping 

With classic square lattices used for dot screens, even the 
slightest mismatch in register from color to color will 
produce enormous moiré.5 An irrational halftoner is 
therefore well suited to both produce the correct dot 
positions for classic halftoning, and also available to 

continuously adjust the dot positions to achieve 
multiseparation electronic registration. 

The results of being able to produce dots at arbitrary 
positions in the scan field are shown by example. Figure 8 is 
a magnified simulation of three separations made at 
different halftone angles to demonstrate rosette perfor-
mance. The nominal scan parameters were made similar to 
the examples given in this paper. The clear centered rosettes 
can be transformed into dot centered rosettes by setting the 
accumulator phases to half the modulus at the start of each 
separation. 

 

Figure 8. Clear centered rosettes. 

 
Figures 9a and 9b show a simulation of a reference 

clustered halftone dot grid made with the clustered dot 
function, and an exaggerated warp made by adjusting the 
scan grid while printing. 

The warp was achieved by applying four separate (and 
wildly exaggerated!) distortions to simulate electronic 
registration errors. These warps adjust for scan line non-
linearity, scan line bow, process direction skew, and process 
direction velocity errors, and were made with spline 
interpolated functions for each separate error, then summed 
together to be applied to the accumulator increments.6 
Obviously, any real system would use much smaller 
distortions in the opposite sense: The warped dots would 
look equally spaced after the distortion compensates for 
printer spatial errors. Also, in a real system, some of these 
corrections would be computed in real time from sensors on 
the machine, as well as using data stored in memory for 
such corrections as laser scan non-linearity. Note that there 
is a one-to-one correspondence between the dots in both the 
reference and the warped image, making them congruent 
through warping. 

Issues 

There are some issues revealed by this method of halftoning 
that deserve consideration. For instance, there is some 
residual low contrast moiré that can pervade the entire 
intensity range. This can be explained most easily by 
considering the highlight part of the dot function (or the 
empty part in the shadow). This region can be so small that 
the dot is missed completely at regular intervals by some 
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phases of the sampling grid due to scan grid quantization 
error. Extending this reasoning into midrange dots, the 
quantization error will insure that there will be some phase 
related patterning regardless of dot size. This problem is the 
focus of current research. 

 

Figure 9a. Reference unwarped regions. 

 

Figure 9b. Regions congruent with 9a through warping. 
 
 
Another issue is that this method will sometimes 

produce contouring for dots produced when the frequency 
and angle is rational. This is easy to see, for rational 
increments will return to the exact starting point within a 
small number of steps, skipping accesses to many other 
memory locations, and thus leaving them unused for the 
entire print. For the same reason, a particular halftone set 
achieves better results when it is made with yellow = 0.5°, 
cyan =15.5°, black = 45.5° and magenta = 75.5°, thus 
offsetting the angles by a half a degree to avoid the 
repetitious accesses at 0.0°. As this problem collapses to the 
same problem encountered in rational halftoning, better 
attention to growth details should fix it. 

Another problem is that the method of integration 
assumes that the perceived density of the printed image is 

proportional to the integration area. This assumption is only 
correct to the first order, and may be inadequate for high 
quality printing. For example, in a flying spot scanner, the 
gaussian spot and the xerographic development system will 
treat an isolated addressability unit on one scan that is 
attached to a more significant set of adu’s on an adjacent 
scan differently from the same adu simply attached to the 
end of the more significant set of adu’s. Although the area is 
the same, the response will be different. Although further 
work is required to compensate for this difference, the 
problem is by no means restricted to irrational halftoning. 

Conclusion 

A method for creating a clustering function for irrational 
halftoning has been shown. The clustering algorithm uses 
an extended integration window to help reduce moiré by 
compensating for fractional overlaps of the dot function into 
the scan field. The resulting cluster function has been shown 
to produce low-moiré screens at irrational angles, as 
demonstrated by classic rosette structures. Finally, the 
irrational halftoning system has been driven with a varying 
scan grid to demonstrate a functional halftone warping 
system, suitable for use in electronic registration. 
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