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Abstract 

Many imaging systems are described by an MTF function. 
However, MTF is defined rigorously only for linear 
imaging systems, and the printing process is intrinsically 
non-linear. However, a spatial attenuation function we call 
the Printer Transfer Function, PTF, can be defined 
experimentally, and it behaves much like an MTF. The 
measurement of the PTF is illustrated for a 300 dpi 
electrophotographic printer. The PTF is shown to be 
experimentally independent of the halftone pattern printed, 
but a scaling factor, r, which is highly dependent on the 
halftone pattern, is required in order to calculate the noise 
power spectrum, NPS, of the printed halftone from the NPS 
of the ideal halftone in the computer. 
 

Introduction 

Over the past decade there have been many reports of 
halftone algorithms designed to incorporate a model of the 
spatial sensitivity function for human vision, also called the 
Visual Transfer Function (VTF).1 The VTF is much like an 
MTF function for an imaging system and low-pass filters 
the noise one observes in an image. The visual noise in a 
halftone can be estimated by measuring the noise power 
spectrum, NPS, of the halftone and multiplying it by the 
VTF. Most reports in the literature calculate the NPS 
directly from the virtual matrices (bit maps) of 0s and 1s in 
the computer. However, when halftone patterns are printed 
they do not form perfect matrices of reflectance factors 0s 
and 1s. Ink reflectance is greater than 0 and paper 
reflectance is less than 1. More important, the printing 
process suffers both physical and optical dot gain effects. 
While many attempts to incorporate so-called "printer 
models" have been reported,1 only the effects of dot gain on 
tone reproduction have been considered. However, the 
printing process also acts like a low-pass filter, and one 
would expect the printing process as well as the VTF to 
have a significant impact on printed halftone noise. This 
study was undertaken to examine the impact of the printing 
process on the NPS of halftones. Experimental work 
involved halftone patterns printed by a 300 dpi 
electrophotographic printer with black toner onto plain 
paper.  
 

Experimental 

Five halftone types were printed at 300 dpi in this study; 
clustered dots at 30 LPI; a Linear Pixel Shuffling (LPS) 
system2; a Robert's white noise system3; a proprietary error 
diffusion system; and a Bayer dispersed dot halftone1. As 
shown previously,2 these systems cover the entire spatial 
range of NPS for halftones at 300 dpi addressability, and 
they also cover the entire range of clustering types from 
maximum (clustered dots) to minimum (Bayer). Noise 
power spectra were calculated from the virtual matrix of 0s 
and 1s in the computer before printing. NPS were also 
determined for the printed halftones by microdensitometric 
analysis. Microdensitometry was done by capturing video-
microscope images of the printed halftones at a field of 
view of 10.8 mm. The MTF of the video-microscope system 
was measured and found to have a linear decline from 1.0 at 
0 cy/mm to a value of 0.75 at 10 cy/mm. Data was not 
examined beyond 8 cy/mm, so instrument MTF correction 
was small and straightforward. The video-microscope was 
calibrated so pixel values (0 to 255) could be converted 
pixel by pixel into reflectance values (0 to 1). Thus image 
matrices (x,y, pixel value) were converted to reflectance 
matrices (x,y, R), and two-dimensional NPS were 
calculated. The RMS reflectance deviation, σ, was 
calculated both for the virtual halftone and for the printed 
halftone pattern. The NPS were normalized such that the 
total area under each NPS curve equaled its corresponding 
σ2. The NPS of halftones before and after printing were then 
used to estimate a spatial transfer function we call the 
Printer Transfer Function, PTF.  
 

Printing Ink on Paper 

The NPS functions of the error diffusion system before and 
after printing are shown in Figure 1 as the log of the radial 
averaged noise power, Log(W), versus the spatial frequency 
in cy/mm. 

Two features are immediately evident in Figure 1. First, 
the two curves do not appear to extrapolate to the same 
value at zero cycles/mm. This was observed for most 
halftones examined. In general, zero frequency noise 
estimates are experimentally difficult.  
 The second prominent feature of Figure 1 is the 
increased attenuation of noise at higher frequency. This is a 
low-pass filtering effect we will attribute to a printer 
transfer function, PTF, we will define subsequently. 
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Figure 1: Log of the noise power, W, versus spatial frequency for 
an Error Diffusion halftone with a nominal dot area fraction of Fn 
= 0.2 before and after printing. 

 
 A decrease in noise power on printing is partially 
rationalized by the decrease from ∆R = Rp - Ri =1.00 in the 
ideal computer halftone to a value much less than 1.00 in 
the printed halftone. From the Murray-Davie equation, it 
can be shown easily that the overall RMS granularity, σ, of 
an ideal halftone with ink reflectance Ri and paper 
reflectance Rp should be given by equation (1). 

2ΔRF)(1F2σ ⋅−⋅=     (1) 

If one calculates σ2 before and after printing, a decrease in 
noise power can be estimated. For the virtual halftone the 
values of Rp and Ri are 1 and 0, so ∆R2 = 1 and the virtual 
RMS noise is given by equation (2), where Fn is the nominal 
dot fraction. 

σο
2 = Fn(1-Fn)         (2) 

In the example of Figure 1, Fn = 0.2, but when the 
halftone is printed, microdensitometric measurements show 
Rp = 0.70, Ri = 0.10, and F = 0.3 (a 10% physical dot gain). 
Equation (3) then estimates the noise power of the printed 
halftone. 

σp

2 = F(1-F)(Rp-Ri)
2    (3) 

We define a noise attenuation ratio r = σo

2/σp

2 and then 
define a shift, S, in log noise power. 

S = -log(r)     (4) 

 From measured values of Rp, Ri, and F, a log-noise shift 
of S = 0.33 (r = 0.47) is calculated for the system in Figure 
1. However, as shown in Figure (1), total noise power is 
attenuated more as the spatial frequency increases. Thus S = 
0.33 is an estimate of the shift in noise power only at the 
zero frequency intercept of Figure 1, and indeed it is only a 
lower limit estimate based on the assumption of a perfect 
bimodal distribution of reflectance, Rp and Ri. 
Experimentally, the zero frequency shift in Figure 1 is 
closer to S = 0.65. Real halftones have reflectance 
histograms that show significant amounts of spread around 
the mean values of Rp and Ri. This tends to decrease the 
estimated value of σp

2 and thus to increase the value of S. 
This coupled with higher attenuation at higher frequency 
makes zero frequency noise difficult to estimate 
theoretically as well as experimentally.  

The Printer Spatial Transfer Function 

As shown in Figure 1, noise is attenuated more at high 
frequencies than at low frequencies. Prediction of this effect 
a-priori requires full knowledge and quantitative 
understanding of the printing mechanism and is beyond the 
scope of the current work. The alternative is to measure the 
effect experimentally. This was done comparing the 
spectrum of the printed halftone, NPSp(ω), to that of the 
virtual halftone, NTSo(ω), as shown in equation (5). Figure 
2 shows the results for the error diffusion system of Figure 
1, with the ratio r adjusted so the data extrapolates through 
PTF=1 at zero cycles/mm.  
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Figure (2): PTF for error diffusion system. 

 
The solid line shown in Figure (2) is the exponential 

model shown in equation (6). 

ω⋅−= kePTF        (6) 

The value of k = 0.25 in units of mm-1 was selected to best 
fit the data.  

The approximation behind this analysis and the 
definition of equation (5) is the assumption that a printer 
acts as a linear system. The justification for this 
approximation is based on experimental observations of the 
five halftone systems examined in this project. Using 
equation (5), best fit values of r and k were obtained for the 
five halftone systems in this study. The result was a wide 
variation in r but nearly constant values of k, within 
experimental error. Thus the value of k, and therefore the 
PTF function characteristic of the printing process, appear 
to be independent of the halftone process within 
experimental error. The ratio r, on the other hand, is a factor 
associated with tone reproduction and dot gain effects well 
known to be closely dependant on the halftone algorithm.  

Conclusion 

The results of this work suggests that the printer transfer 
function of equation (5) may provide a useful method for 
characterizing the noise propagation properties of printing 
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systems independent of the halftone algorithm employed. 
However the shift factor, r, is not independent of the 
halftone pattern, so a tone reproduction analysis by 
microdensitometry is essential to a full calibration of a 
printing system. Once tone reproduction analysis provides 
the r characteristic of a halftone algorithm, noise power of 
the printed halftone, NPSp can be estimated by equation (7). 

PTFroNPSpNPS ⋅⋅=      (7) 

It is important to point out that the PTF function is not 
an MTF function, although it seems to behave very like one. 
The printer is intrinsically a non-linear system with two 
spread functions active in the printing process. One of the 
spread functions at work mechanistically is the physical 
spread of colorant mass, often called physical dot gain. This 
point spread function, PSF, describes the point distribution 
of colorant in the system. Colorant mass is not linearly 
related to reflectance, R, or transmittance, T. The other 
spread function in the system is the optical spread function 
of light in the paper, and light is linear in R and T. Thus the 
optical PSF (optical dot gain) is always non-linear relative 
to the colorant mass PSF (physical dot gain), so they can not 
be convolved to estimate the overall system PSF. The 
practical manifestation of this is that although the PTF 
function suggested in this report may be useful in estimating 
noise power changes that result from the printing process, it 

can not simultaneously be used to estimate tone 
reproduction characteristics of the printer. 
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