
Linear Pixel Shuffling (I):
New Paradigms for New Printers

Peter G. Anderson, Jonathan Arney, and Kevin Ayer
Rochester Institute of Technology

Rochester, NY, USA

Abstract
Linear Pixel Shuffling (LPS) is a novel order for image

pixel processing which provides opportunities for construc-
tion of dot placement algorithms for high-resolution printers
through micro-clumping and the formation of pseudo clus-
tered dots.

We present the details of LPS, how to program using it,
several of its properties and applications, especially for elec-
trophotographic (EP) imaging.

1. Fibonacci numbers, the golden mean, and
applications

The well-known Fibonacci sequence

F : 0; 1; 1; 2; 3; 5; 8; 13; 21; 34; � � � (1)

where each number is the sum of the previous two numbers
has the formal, recursive definition

F0 = 0; F1 = 1

Fn = Fn�1 + Fn�2 for n � 2 (2)

An alternative definition is

Fn =
�n � �np

5
(3)

where

�; � =
1�

p
5

2
(4)

and

� = lim
n!1

Fn+1

Fn
(5)

� � 1:618 is the golden mean.
A convenient formulation of the Fibonacci numbers and

the golden mean is by means of a matrix. This matrix formu-
lation is particularly useful for our generalizations below.�

1 1

1 0

�n �
1

0

�
=

�
Fn+1
Fn

�
(6)

The golden mean appears in an eigenvector:�
1 1

1 0

� �
�

1

�
=

�
�+ 1

�

�
= �

�
�

1

�
(7)

1.1. One-dimensional blue noise

The Fibonacci shuffle is the permutation of f0; 1; � � � ; Fn �
1g formed by multiples of a Fibonacci number modulo the
following Fibonacci number. Here, for example, is the first
full period of the sequence of multiples of F6 = 8 modulo
F7 = 13:

0; 8; 3; 11; 6; 1; 9; 4; 12; 7; 2; 10; 5 (8)

This sequence has several useful properties:

� The period consisting of the first Fn values contains all
of the numbers f0; 1; 2; � � � ; Fn+1 � 1g, because two
successive Fibonacci numbers have no common factors
greater than one (they are “relatively prime”).

� Numbers close in the shuffle are not close in value. The
Fibonacci shuffle was originally developed for a simple
approach to progressive rendering of computer graph-
ics (fractals and ray tracing). The idea is to render the
scan lines in the order they appear in the shuffle list.
F16 = 987 is a convenient number of scan lines to use
for modern computer monitors.

� The sequence has excellent “blue noise” properties. Fig-
ure 1 shows the power spectrum of the multiples of
F15 = 610 modulo F16 = 987.

We can construct a sequence of real numbers in the range
[0,1] by

sk = fk�g (9)

where the brackets denote the fractional part:

fxg = x� [x] (10)

which is also referred to as “x mod 1.” The first 13 elements
of this sequence are

0; 0:618; 0:236; 0:854; 0:472; 0:090; 0:708; (11)

0:326; 0:944; 0:562; 0:180; 0:798; 0:416

The power spectrum of ffk�g j 0 � k < 987g is nearly iden-
tical to Figure 1, because the two sequences are very close to
multiples of each other.

IS&Ts NIP16: 2000 International Conference on Digital Printing Technologies

801

IS&Ts NIP16: 2000 International Conference on Digital Printing Technologies Copyright 2000, IS&T

Figure 1: Power spectrum of the Fibonacci shuffle consisting of mul-
tiples of F15 = 610 modulo F16 = 987. (In all displayed power
spectra, the DC coefficient has been set to zero.)

Figure 2: Power spectrum of ffk�g j 0 � k < 987g thresholded at
0.5.

The sequence fk�g may be used as a one-dimensional
blue noise mask (for example, for dithering audio signals).
The power spectrum of the sequence ffk�g j 0 � k < 987g
thresholded at 0.5 is shown in Figure 2.

Another application for the sequence sk = fk�g is Monte
Carlo integration:

Z 1

0

f(x)dx � 1

N

N�1X
k=0

f(sk) (12)

The values of fk�g are very evenly spread throughout [0,1].
For any given number N of points, the gaps between pairs
of the sk take on at most three different values, and these are
three numbers in golden mean geometric progression. Each
new number sN subdivides one of the largest gaps in golden
mean proportions. For Monte Carlo integration, this is far
superior to a white noise pseudo random sequence.

2. Two dimensional generalizations

The Fibonacci sequence is defined by a second order linear
recurrence, meaning that each term is a linear combination
of the two preceding terms. Our “two-dimensional general-
ization” to the preceding material uses sequences defined by
third order linear recurrences. The Tribonacci sequence uses

T0 = 0; T1 = T2 = 1 (13)

Tn = Tn�1 + Tn�2 + Tn�3 for n � 3

The first few terms are

T : 0; 1; 1; 2; 4; 7; 13; 24; 44; 81; 149; 274; 504 (14)

Another sequence, we call G, is defined by

G0 = 0; G1 = G2 = 1 (15)

Gn = Gn�1 +Gn�3 for n � 3

The first few terms are

G : 0; 1; 1; 1; 2; 3; 4; 6; 9; 13; 19; 28; 41; 60; 88 (16)

Like the Fibonacci numbers, T and G are conveniently
described by matrix equations:2

4 1 1 1

1 0 0

0 1 0

3
5
n 2
4 1

0

0

3
5 =

2
4 Tn+1Tn
Tn�1

3
5 (17)

and 2
4 1 0 1

1 0 0

0 1 0

3
5
n 2
4 1

0

0

3
5 =

2
4Gn+1

Gn

Gn�1

3
5 (18)

We get two-dimensional analogues to the golden mean via
eigenvectors:2
4 1 1 1

1 0 0

0 1 0

3
5
2
4 �1�2

1

3
5 =

2
4 �1 + �2 + 1

�1
�2

3
5 = �2

2
4 �1�2

1

3
5 (19)

and 2
4 1 0 1

1 0 0

0 1 0

3
5
2
4 12

1

3
5 =

2
4 1 + 1

1
2

3
5 = 2

2
4 12

1

3
5 (20)

Eq. (19) implies
�32 = �22 + �2 + 1 (21)

and Eq. (20) implies

32 = 22 + 1 (22)

The vectors ~� = (�1; �2) and ~ = (1; 2) provide meth-
ods for uniformly sampling points in [0; 1]2 for Monte Carlo
integration, generalizing Eq. (9):

~sk = fk~�g = (f�1g; f�2g) (23)

The matrix formulations (Equations (6), (17), and (18)) all
use invertible matrices. This allows us to use Fn, Gn, and Tn
with negative values of n, which we exploit in Section 2.3.

IS&Ts NIP16: 2000 International Conference on Digital Printing Technologies

802

IS&Ts NIP16: 2000 International Conference on Digital Printing Technologies Copyright 2000, IS&T

0 60 32 4 64 36 8 68 40 12 72 44 16
41 13 73 45 17 77 49 21 81 53 25 85 57
82 54 26 86 58 30 2 62 34 6 66 38 10
35 7 67 39 11 71 43 15 75 47 19 79 51
76 48 20 80 52 24 84 56 28 0 60 32 4
29 1 61 33 5 65 37 9 69 41 13 73 45
70 42 14 74 46 18 78 50 22 82 54 26 86
23 83 55 27 87 59 31 3 63 35 7 67 39
64 36 8 68 40 12 72 44 16 76 48 20 80
17 77 49 21 81 53 25 85 57 29 1 61 33
58 30 2 62 34 6 66 38 10 70 42 14 74
11 71 43 15 75 47 19 79 51 23 83 55 27
52 24 84 56 28 0 60 32 4 64 36 8 68

Figure 3: Mask table defined using three consecutive G-numbers:
Mpq = (41p+ 60q)%88.

2.1. Halftone masks

T and G can be used to construct two-dimensional tables that
we call “linear pixel shuffling” (LPS), which generalize the
one-dimensional Fibonacci shuffle. Let the parameters A, B,
and C be three successive numbers in either T or G. Then the
mask M is defined by

Mpq = (pA+ qB)%C (24)

where % denotes the remainder operation. Figure 3 shows
a portion of M using A = G12 = 41, B = G13 = 60,
C = G14 = 88. Similar to the Fibonacci shuffle, values
numerically close are physically distant in M . This prop-
erty makes these masks excellent candidates for Bayer-type
thresholding masks for digital halftoning. Figures 4 and 5
show images of constant gray levels of 25% and 50% quan-
tized to bi-level using masks with G and T parameters, re-
spectively. These masks can be made as large as desired, but
there is no storage penalty for large masks. The masks are
remainders of addition tables of linear progressions, so each
entry can be computed directly from the entry above it or to
its left using a single addition and a conditional subtraction—
this is at most as computationally expensive as a table lookup,
but the table is absent. The important property of the three
parameters A, B, and C, is their ratios, so masks can be con-
structed, guided by the parameters of G and T numbers, with
any desired range of values.

Analogous to the sequence sk = fk�g, we can define a
two-dimensional mask of values in [0,1] defined by:

Mpq = fp1 + q2g (25)

2.2. Spectral properties of M and their images

Figure 6 shows the power spectra of the 50% black, 64� 64

image shown in Figure 4. Figure 7 shows the power spectrum
of the thresholding mask used to create that image.

Figure 4: Dot patterns produced by using the mask M with param-
eters A = T13 = 927, B = T14 = 1705, C = T15 = 3136, as a
threshold mask at levels 25% and 50%.

Figure 5: Dot patterns produced by using the mask M with param-
eters A = G21 = 1873, B = G22 = 2745, C = G23 = 4023, as a
threshold mask at levels 25% and 50%.

IS&Ts NIP16: 2000 International Conference on Digital Printing Technologies

803

IS&Ts NIP16: 2000 International Conference on Digital Printing Technologies Copyright 2000, IS&T

0
10

20
30

40
50

60 0

10

20

30

40

50

60

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

Figure 6: Power spectrum of the 50% black image of Figure 4.

0
10

20
30

40
50

60 0

10

20

30

40

50

60

0

5e+11

1e+12

1.5e+12

2e+12

2.5e+12

3e+12

3.5e+12

4e+12

Figure 7: Power spectrum of the mask M with parameters A =

G21 = 1873, B = G22 = 2745, C = G23 = 4023.

2.3. Processing in LPS order

Figure 3 provides directions for processing the pixels of an
image, namely: process the pixels (p; q) such that Mpq = 0,
then those such that Mpq = 1, and so on. The following
algorithm will do this.

for (i = 0; i < Gn; i++) f

for (j = 0; j < Gn; j ++) f
�
p

q

�
=

�
G3�n Gn�3

G2�n Gn�2

� �
i

j

�

process pixel (p; q)

g
g

It is straightforward to see that the coordinates (p; q) satisfy
Mpq = i; see [1].

When we use the LPS order to progressively render an im-
age we find it convenient to use “fat pixels,” that is, the first
several pixels we determine and render can be surrounded by
a square of pixels the same color. This serves to fill the screen
rapidly, showing a low resolution image. As more and more
pixels are computed and rendered, the size of the squares can
be decreased to avoid overwriting any previously rendered
pixel (of course we overwrite the surrounding squares). Typ-
ically, we begin with 7� 7 squares. If the image dimensions
are Gn �Gn, then we will switch to 5� 5 squares when we
reach i = Gn�10 (i is the outer loop induction variable in the
above program), switch to 3�3 squares when i = Gn�7, and
1� 1 squares (isolated pixels) when i = Gn�5. For example,
for an image of size G20 � G20 = 872� 872, we start with
7 � 7 squares, and reduce to 5 � 5 squares at i = 19, 3 � 3

squares at i = 60, and isolated pixels at i = 129. Figure 8
shows a sample image at 2%, 7%, 15%, and 100% rendering
using the LPS order combined with fat pixels.

The fat pixel idea, as illustrated here, extends to many
areas of image processing. In Section 3, we discuss an error
diffusion algorithm that takes advatage of the uniform proper-
ties of LPS pixel visitation. We note, for example, that a vast
number of the pixels in the 2% rendered picture are already
correct, and do not need to be rendered, stored, or transmitted.
That is, we have an algorithm that is a two-dimesional analog
of run-length compression. We have investigated this algo-
rithm, and it is competitive with run-length in compression
ratios, but it has the special feature: a prefix of an image’s
compressed representation is a lossy compression of the en-
tire image, rather than a lossless compression of a portion of
the image.

Other applications for LPS are Hough transforms and ap-
proximations to morphological transforms.

IS&Ts NIP16: 2000 International Conference on Digital Printing Technologies

804

IS&Ts NIP16: 2000 International Conference on Digital Printing Technologies Copyright 2000, IS&T

Figure 8: The Mandelbrot set, partially rendered using fat pixels of
sizes: 7 � 7 (2% rendered), 5 � 5 (7%), 3 � 3 (15%), and 1 � 1

(100%).

3. Electrophotographic dot gain

Ink dots on EP paper are approximately small circles, not
squares. To assure possible 100% ink coverage, the dots’ di-
ameters must be at least D

p
2 inches, where D is the number

of dots per inch. The ink dot gain resulting from this is at
least 1.57 (the area of the ink circle as a multiple of the nom-
inal area of a pixel).

Another phenomenon, known as optical dot gain, pro-
vides a gray halo around ink dots, because light photons en-
tering paper near an ink boundary are diffused within the pa-
per and trapped by the ink.

Consequently, a single black pixel has the printed black-
ness effect of 2.0–2.5 its nominal value (see [2] and [3]), and
printed images are much darker than the nominal pixel cov-
erage suggests. An image with 50% black pixels arranged in
a checkerboard alternating pattern will be totally black.

One method to correct for this dot gain is to scale the
thresholding matrix, which can be done by a lookup table or
a calculation. Linear pixel shuffling provides an opportunity
for more delicately responding to this dot gain phenomenon
via a method of error diffusion (introduced in [1] and [4]) in
which the image pixels are visited and quantized in the LPS
visitation order described above. This permits the quantiza-
tion error to be divided among unquantized pixels onmidi-
rectionally. The following pseudocode shows a generic error
diffusion algorithm to convert an input image with pixel val-
ues 0 � gpq � 1 to a bi-level output image with pixel values
bpq 2 f0; 1g (here 0 denotes white and 1 denotes black). If
the output pixel is bpq = 1, then the error is computed us-
ing a black overshoot value of dg , the dot gain parameter (in
2.0–2.5).

for each image pixel (p; q) f

if (gpq > 0:5)

then bpg = 1

else bpg = 0

error = dg � bpq � gpq

distribute error among unprocessed neighbors

g

We suggest that the pixels (p; q) be chosen in LPS order.

4. Electrophotographic precision and stability

High resolution (1,200 dpi or more) EP printers cannot reli-
ably print isolated black dots. They can, however, place clus-
ters of black dots with high positioning accuracy. Halftone al-

IS&Ts NIP16: 2000 International Conference on Digital Printing Technologies

805

IS&Ts NIP16: 2000 International Conference on Digital Printing Technologies Copyright 2000, IS&T

Figure 9: Patches at gray level 64 (25%) and 128 (50%) converted
to black and white using linear pixel shuffling error diffusion.

gorithms need to take this phenomenon into account, convert-
ing continuous tones scales to clustered dots or little lines and
curves. The linear pixel shuffling error diffusion algorithm
can produce bilevel images with lines in the microstructure.
Figure 9 shows two images this algorithm produces using the
following error diffusion kernel:

2
66664

0 1 1 1 0

1 2 3 2 1

1 3 P 3 1

1 2 3 2 1

0 1 1 1 0

3
77775 (26)

The error from quantizing the pixel P is distributed among
its unquantized neighbors according to the weights indicated.
We have investigated several other kernels, and the textures
can be even more striking. This technique can provide a wide
variety of special halftoning effects and work well with the
peculiarities of modern printers.

The LPS error diffusion process can also quantize small
line segments in various orientations rather than simply indi-
vidual pixels. This can force black dot clustering and hence
EP image stability. Similarly, the LPS masks M can also be
modified to use small constant lines and similar figures yet
retain the LPS number patterns and their desirable blue noise
properties. This is work in progress.

References

[1] Peter G. Anderson. Error diffusion using linear pixel
shuffling. In Proceeding of Image Processing, Image
Quality, and Image Capture Systems Conference (PICS
2000), Springfield, VA, 2000. The Society for Imaging
Science & Technology.

[2] Jonathan Arney, Peter G. Anderson, Kevin Ayer, and
Prashant Mehta. Linear pixel shuffling (ii): An exper-
imental analysis of tone and spacial characteristics. In
Proceedings of The 16th International Congress on Dig-

ital Printing Technologies (NIP 16), Springfield, VA,
2000. The Society for Imaging Science & Technology.

[3] Jonathan Arney, Peter G. Anderson, Kevin Ayer, and
Prashant Mehta. The MTF of printing systems. In Pro-
ceedings of The 16th International Congress on Digital
Printing Technologies (NIP 16), Springfield, VA, 2000.
The Society for Imaging Science & Technology.

[4] John Szybist and Peter G. Anderson. Digital halfton-
ing using error diffusion and linear pixel shuffling. In
Fredric T. Howard, editor, Applications of Fibonacci
Numbers, Boston, MA, 1999. Klewer Academic Publish-
ers.

This research was supported by a grant from Hewlett-Packard.

IS&Ts NIP16: 2000 International Conference on Digital Printing Technologies

806

IS&Ts NIP16: 2000 International Conference on Digital Printing Technologies Copyright 2000, IS&T

