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Abstract 

A printer inverse map is usually represented as a 
multivariable lookup table, associating points in the 
printer’s output color space with points in the printer’s input 
color space. This lookup table is an essential component in 
many print quality enhancement algorithms. It is often 
desirable to have a printer inverse table with input nodes 
regularly spaced on a sequential plane. Thus, the 
computation of this lookup table requires the interpolation 
of irregularly sampled multidimensional data, coming from 
experiments used to determine the printer forward map. 
Existing computational techniques do not provide an 
accurate printer inverse map from irregularly sampled data. 
In this paper we introduce a new Iteratively Clustered 
Interpolation (ICI) algorithm to compute an accurate inverse 
table from irregularly sampled color data. This algorithm is 
based on a gradient optimization method with initial points 
generated through a novel iterative technique. Experimental 
results are included to show the effectiveness of this 
algorithm in comparison with other techniques.  

1. Introduction 

The printer inverse map is often given as a lookup table 
mapping points from the printer’s output color space into 
points in the printer’s input color space; i.e. 
L*a*b*→CMYK, XYZ→CMYK, etc. For networked 
printers, with no knowledge of the internals of the driver, 
the inverse could also be thought of as the lookup table with 
the map L*a*b*→L*a*b*. Measuring the printer forward 
transfer function between the inputs and the outputs 
generates the lookup table. For example, in a PostScript 
print path, the PostScript interpreter with colors in 
XYZ/L*a*b* becomes the input, and the corresponding 
colors as measured by a spectrophotometer (color sensor) 
becomes the printer output. A table with input and output 
colors becomes the forward transfer function. The forward 
transfer function is used to create the printer inverse and the 

associated rendering intents; e.g., colorimetric, pictorial/ 
perceptual, saturation, pure, etc.  

While measuring the forward transfer function, it is 
possible to structure the input data by selecting equally 
spaced input grid points. Although just by swapping the 
data of the forward transfer function we can generate the 
inverse, the data of the input grids for such an inverse 
becomes unstructured because the output grids of the 
forward transfer function are unstructured. Especially for 
colors at the boundary, this type of inverse is not well 
defined (resulting into multi-valued outputs). Given the 
unstructured lookup table with the input-output (I/O) values, 
our goal is to find an efficient algorithm to compute a 
“good” inverse printer table with structured input nodes. 
Multidimensional interpolation is a key to obtain such a 
structured table. 

In our proposal we will consider the colorimetric 
rendering intent; i.e., to match the output L*a*b* with the 
input L*a*b* for colors inside the printer gamut. Also, the 
problem is further compounded by the requirement of 
keeping the colors consistent across not only one printer, 
but also across the whole enterprise (host of printers, 
Xerographic, thermal ink jet, etc., host of monitors and 
scanners). To do so, we need to be able to describe the color 
in some device independent color space. Hence we use 
L*a*b* as our color space standard. Also, we stress that we 
require the printer inverse to be a structured lookup table; 
i.e., uniformly sampled with grid points equally separated in 
the input space.  

There exist different multidimensional interpolation 
techniques; e.g., trilinear, tetrahedral,1 Sequential Linear 
Interpolation (SLI),2 that qualify for use in generating the 
printer inverse lookup table. Multidimensional interpola-
tion is also required for those colors that are not in the 
lookup table (i.e., not in the nodes of the lookup table). So, 
there are basically two kinds of applications for the inter-
polation algorithms: (a) for generating the basic printer 
inverse table (i.e., the structured table nodes) and (b) for 
interpolating colors that are not nodes of the printer inverse 
table. In this paper, we concentrate on the application (a). 
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Notice that the SLI technique can handle non-uniformly 
sampled input data whereas others require uniformly spaced 
mapping table. Still SLI requires the input data to be on a 
sequential grid; i.e., not totally unstructured. 

Many techniques have been proposed for interpolating 
multidimensional, unstructured lookup tables. Examples are 
the Shepard’s interpolation algorithm3 and the Master Color 
Controls (MCC) algorithm.4 The Shepard’s algorithm is 
very time consuming and is not accurate when compared to 
other methods. The MCC algorithm uses a control-based 
technique with a multi-input multi-output linear controller. 
It can give zero interpolation errors (numerically) when the 
printer I/O pairs are used as the model, and can lead to 
minimal errors in the printer inverse when used directly on 
the printer. It suffers, however, from stability problems for 
input-output pairs near the boundary of the printer color 
gamut. The accuracy of the proposed ICI algorithm is 
comparable to the accuracy of the MCC, while the ICI 
algorithm can capture more points of the invertible region 
of the color space than the MCC algorithm. From the 
experimental evidence gathered on Xerox printers, the ICI 
algorithm gives excellent results when compared with the 
existing algorithms.  

2. The ICI Algorithm 

Before describing the actual technique, let us discuss the 
criteria for judging the accuracy of the algorithm. In Figure 
1 we show schematically a smooth (forward) printer 
function P, with input Laby and output Labz (notations are 
listed at the end of the paper). A smooth inverse printer 
function is denoted by P-1 with input Labx and output Laby. 
Once the inverse Laby is obtained, it is passed through the 
printer model to obtain Labz. If the inverse of the printer 
model is accurate, Labz will be “very similar” (in theory, 
equivalent) to Labx for all invertible in-gamut colors. To 
quantify this similarity we propose to use the quantity ∆E, 
which is the Euclidean distance in the Lab-space between 
the input Labx and the output Labz. Thus, this quantity is 
used to judge the accuracy of the algorithm for all the colors 
selected on the input grid, which may or may not be on the 
nodes of the P-1 lookup table. The larger the value of ∆E, the 
more inaccurate the algorithm is. 
 

Labx      Laby    Labz 

PP-1

 

Figure 1: Representation of the input-output data for the P-1 model 
and the P model. 

The algorithm consists of three parts.  
1. In the first part we obtain an initial estimate of the 

inverse for a given set of Lab values using the 
clustering interpolation method. These estimates are 
later refined to get the best accuracy (i.e., the lowest ∆E 
from Labx and Labz) using a gradient search method.  

2. If the inversion of a particular color does not yield a 
good inverse (a low ∆E), then the second part is 
invoked, in which the initial estimate of Laby is 
changed to Labx and the gradient search method is 
applied again for this new initial point.  

3. If this part fails, then the third part is called, in which 
we change the initial Lab estimate of Laby by a method 
“similar” to the simulated annealing algor-ithm, and use 
the gradient search again. These three parts, outlined 
above and described in detail next, will give the best 
inverse for any color if that color is within the printer 
gamut (i.e., if the inverse exists).  

2.1 Initial Estimation Using Clustering Interpolation 
Let the forward printer model be specified by the 

lookup table mapping uniformly spaced points in the Labi 
space into non-uniformly spaced points in the Labo space. 
Points in the Labi space are chosen to form a perfect cube, 
and thus for the forward interpolation process from Labi to 
Labo various linear interpolation techniques on structured 
input can be used. To compute the initial estimate of the 
inverse of an arbitrary point px in the output space, follow 
the steps described next (see Figure 2):  
 

• Find the point pi that is the closest point to px over 
all the points in the output of the lookup table.  

• Find its pre-image point Zi in the Labi space (Zi is a 
grid point in the input space of the forward printer 
lookup table). This point is taken as a coarse 
estimate of the inverse to px.  

• Improve this coarse estimate by moving along the 
L*, a* and b* axis around Zi and generating a 
cluster of N points (in our simulations we take 
N=125). Use a linear interpolation technique to 
find the N points in the Labo space corresponding 
to these N clustered points. (Recall that for the 
forward interpolation from Labi to Labo the input 
is structured and thus existing linear interpolation 
techniques give accurate results.)  

• Select the nearest point to px among all N points in 
the Labo space, and take its pre-image point in the 
Labi space as the initial estimate of the inverse of 
px.  

Labi Labo 

i 
z 
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x 
p 

 
Figure 2: Schematic representation of the input-output data for 
the forward printer model. 
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If this estimate of the inverse of px is not accurate 
enough (∆E is large), it is then used as the starting point for 
a gradient search algorithm. This algorithm is described 
next. 

2.2 Gradient Search Algorithm 
Denote the estimate obtained from the clustering 

interpolation method by Laby(0). Now minimize the mean 
square error between the input to the inverse printer model 
Labx and the output from the forward printer model Labz. 
By computing the Jacobian of Labz with respect to Laby, we 
obtain the rule for updating Laby according to the following 
least mean square (LMS) recursive equation  
 

Laby (k + 1) = Laby (k) - µB (k)[Labz (k) – Labx], 
 
where Laby is the 3 × 1 vector having L*, a*, and b* as its 
components at the input to the forward printer block P. 
Similarly, Labz(k) and Labx represent the output vector 
containing L*a*b* as its elements from the printer block P 
at the corresponding input vector in Figure 1. The 3x3 
matrix B(k) is the Jacobian of Labz(k) with respect to 
Laby(k) which is evaluated from the printer model using 
linear interpolation and numerical differentiation. k is the 
iteration number localized to the gradient search algorithm. 
The quantity µ is selected to achieve a fast algorithm 
convergence and also to meet the accuracy requirement. 
Large values of µ will give faster convergence at the 
expense of increasing mean square error. In our simulations 
µ = 0.3 is found to be a good choice. 

A large portion of the printer gamut can be “inverted” 
using this gradient search method together with the starting 
point provided by the clustering interpolation method. 
There are, however, invertible points in the printer gamut 
that are not captured by this approach. This is due to the fact 
that the mean square error function that we are minimizing 
has local minima, and the gradient search method with the 
above starting point will converge to one local minimum. 
To remedy this, we provide another method to compute the 
starting point for the gradient search.  

2.3 Initial Estimation Using Alternative Methods  
The method is as follows. First, choose the starting 

point Laby(0)=Labx. This starting point seems to be 
appropriate for colors near the center of the gamut. If this 
starting point still gives a poor inverse, use an approach 
“similar” to the simulated annealing method, i.e., we start 
with  
 

Laby(k = 1) = (1 + α)Laby(0), 
 

where Laby(0) is the estimated point from the clustering 
interpolation method. A value of α = 0.25 seems 
appropriate for our simulations.  

From our extensive experience in the laboratory and 
with simulations, the three methods for selecting starting 
points together with the gradient search method just 
described above worked well for all possible invertible 

points in the printer gamut. A flow chart, given in Figure 3, 
shows the data flow through various steps described above. 
 

Use Clustering
Estimate the initial point Laby (0)
for gradient

Laby

Compute Labz and
DeltaE=||Labx-Labz ||

DeltaE < T

Stop

DeltaE > T

Use Gradient Search
Laby (k+1) = Laby (k) - µ B (k )E (k)

E (k) = Labz (k)-Labx





=+
=

=
3)0()1(

2
)0(

JLaby

JLabx
Laby

α

Initialize Laby
=Laby (0)

Is Iteration
Number > N?

No

Yes

EnterLabx, N, T, µα,
J=1

J=J+1

Is J > 3?

Yes

No

 
Figure 3: Flow chart for the ICI algorithm 

3. Experimental Results 

We tested the ICI algorithm to find the inverse lookup table 
for a Xerox printer. The input data to the printer was 
arranged as a 16 x 16 x 16 uniformly sampled cube (4096 
points) covering the color points defined by L* from 0 to 
100, a* and b* from –128 to 127. We built a forward printer 
model P using linear interpolation techniques. The printer 
inverse was constructed using the ICI algorithm. The input 
grid points Labx for the inverse were selected from a 
uniformly sampled input table, again a 16 x 16 x 16 
uniformly sampled cube with the same bound as above. 
Some of the grid points inside this data set have an inverse, 
and some not. Through the ICI algorithm we were able to 
pick 266 nodes within the gamut that yield the inverse with 
a high mean accuracy and a small variance. The rest of the 
input points were either on the gamut boundary or outside 
the printer’s reproducible space (i.e., they had no inverse). 
After this numerical exercise, the grid points containing 
inverse (i.e., the 266 colors) were then used in the printer to 
test the real accuracy between input to the inverse model 
and the real printer output. Accuracy results are shown in 
the table below, with and without the printer inverse, for the 
266 colors. Mean deltaE is 22 for without inverse. That is 
the deltaE numbers obtained for 266 points for the 
measured forward printer model, P. Also, these results were 

IS&Ts NIP16: 2000 International Conference on Digital Printing Technologies

269

IS&Ts NIP16: 2000 International Conference on Digital Printing Technologies Copyright 2000, IS&T



 

 

compared with the inverse obtained from the master color 
control (MCC) algorithm. The results for the MCC 
algorithm are for 176 nodes only, because MCC algorithm 
did not work for all 266 colors obtained by the ICI 
algorithm. If we restrict to the common 176 nodes, the 
results are practically equal. In summary, the set of points in 
the printer gamut for which we can obtain an inverse using 
the ICI algorithm strictly contains the corresponding set for 
the MCC algorithm. Also, for these 176 “common points”, 
we obtain a degree of accuracy of the same order for both 
the ICI and the MCC algorithms.  
 
 

 ∆E mean ∆E mean + 2σ 
Without Inverse 
(over 266 points) 

22.3 33.2 

With ICI Inverse 
(over 266 points) 

3.5 7.6 

With MCC Inverse 
(over only 176 pts) 

2.2 4.1 

 

4. Conclusions 

A new algorithm to compute a printer inverse lookup table 
with structured input nodes from unstructured data was 
described. This algorithm is based on a gradient optimi-
zation method, with starting points generated through a 
novel iterative technique. Experimental and numerical 
results show that the new algorithm gives a good inverse 
and outperforms other existing techniques.  
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Glossary of Symbols and Notations 

Labi: Uniformly sampled input to the lookup table of the 
forward printer. 
Labo: Output color space corresponding to Labi. 
Labx: Uniformly sampled input to the inverse printer 
model. This contains Lab values not in the lookup table. 
Laby: Output of the inverse printer model. This contains 
output Lab values not in the lookup table. 
Laby(0): Initial estimate of Laby 
Laby(k):Laby at k-th iteration of the gradient search 
algorithm. 
B(k): 3x3 Jacobian Matrix at k-th iteration. 
Labz: Output of the printer model corresponding to Laby 
P: Printer model defined through a uniformly sampled 
lookup table  
P-1: Inverse Printer model defined through a uniformly 
sampled look-up table 
N: Number of points in cluster 
T : Threshold for ∆E 
J : Method index 
k : Iteration number 
αααα: Coefficient for initialization in the third method 
µµµµ: Adaptation coefficient for gradient search 
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