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Abstract
In this paper, we outline two strategies for the maintainence
and optimization of the printing quality of xerographic sys-
tems. The first strategy is concerned with the management
of the effect of disturbances and system variations in the
context of control of the tone reproduction curve via a ro-
bust control methodology. The second strategy deals with
larger scale faults and capability degradation in the xero-
graphic process. In this case, a Bayesian Network based
diagnostics strategy is proposed to detect the fault state and
the state of the capability of the printer. Based on these,
the controller be can reconfigured so as to optimize the
printer’s performance under degraded mode.

1. Introduction

The most fundamental function of a digital xerographic
print engine is to produce on the output media printed im-
ages that are as similar as possible to the desired input im-
ages. As such, printers can be thought of as transforma-
tions of desired input images to printed output images. The
ideal for such a transformation is the unity transformation.

The transformation for an actual printer, is however,
subject to many disturbances due to variation in operat-
ing conditions such as humidity, toner and photoreceptor
age, and geometry etc., as well as more drastic changes of
the system, such as system faults and component degrada-
tion. In a broad sense, the goal of xerographic control is
to maintain this transformation from the desired image to
the output image as close to unity as possible, despite these
variations.

In this paper, we discuss two aspects of this control
objective. The first is concerned with the robust stabiliza-
tion of the tone reproduction curve, in the face of moder-
ate system variation and disturbance. The second aspect is
concerned with larger scale variations and system degra-
dations. Faults in and degradations of the system compo-
nents can reduce the feasible capability of the overall sys-
tem (such as a reduction in the color gamut). Instead of
merely shutting down the system when these faults occur,

it might be advantageous if the machine can remain avail-
able, albeit at a degraded quality. In these cases, the faults
and degree of component degradations need to be actively
diagnosed and identified, so that the control scheme can be
reconfigured to make the best use of the current capability
of the system. Ability of the system to self-diagnose faults
can also improve serviceability and help minimize servic-
ing times.

1.1. The TRC Stabilization problem

A color printer / copier will attain good color rendering
quality if the Image Output Terminal (IOT) can produce
the desired tone for each of the four primary color sepa-
rations (Cyan, Magenta, Yellow, Black) as requested. In
a digital printer, the desired continuous tone image is first
translated into one of many halftone patterns, each labelled
by its halftone density, using a halftoning algorithm. Given
the halftone image, the IOT then physically lays down the
appropriate amount of toner on the output medium. The
toner image should ideally approximate the desired con-
tinuous tone image. A Tone Reproduction Curve (TRC)
of the IOT is a characterization of this latter physical pro-
cess and determines the amount of toner that would be de-
posited on the output media when a halftone image of a
certain half-tone density is given. Thus, the TRC is a map-
ping Φ : [0, 1] → �, so that Φ(tone) represents the de-
veloped toner area coverage on the photoreceptor, when a
halftone image of density tone is presented.

In xerography [4], the TRC is subject to uncontrolled
operating conditions. Variation in these, such as temper-
ature, humidity, toner age and charge density etc. can
cause the TRC to vary so that the IOT can produce un-
predictable output images at various times with the same
input halftone image. Thus, maintaining the TRC constant,
or the stabilization of the TRC, is necessary to avoid hav-
ing to retune the half-toning algorithm, and to allow the
same halftone image to be reused over time. Thus, the first
control strategy involves the design of a TRC stabilizing
controller so that the TRC remains close to the nominal
curve despite variations in uncontrolled operating condi-
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Figure 1: Image path in a digital printing system. The composi-
tion of the half toning and IOT should ideally be a unity transfor-
mation.

tions.
The TRC is a potentially infinite dimensional object (it

is a function of [0, 1]). However, there are only a small
number of actuators available for control (e.g. Scorotron
grid voltage, laser power, development voltage). Current
technology (such as the use of sensor patches and Toner
area coverage (TAC) sensors) only allows the TRC to be
sampled at a small number of tones. The entire TRC is not
available for feedback. Typically, an IOT has m=3 actua-
tors and samples the TRC at n=1 to 5 tones. Consequently,
the control must take caution that the performance of the
TRC does not degrade significant even at the un-measured
tones. In this paper, we describe a robust controller for
TRC stabilization that aims to ensure that the entire TRC
is close to nominal despite disturbances and plant varia-
tion.

1.2. Xerographic diagnostics problem

The number of sensors available in a xerographic engine
for monitoring the components’ health is much smaller
than the number of possible faults. Therefore, faults and
the health states cannot be directly detected and must be
inferred from observations. These observations may be
produced from many sets of fault conditions. The diagnos-
tic problem is to determine the set of fault states and / or
component degradation that best explain the observations.

In this paper, we describe a probabilistic diagnostic ap-
proach based on Bayesian Belief Network (BBN). Proa-
bilistic diagnostic approaches have the advantage over de-
terministic approaches in which causal relationships are
encoded in crisp logic. In probabilistic approaches, the
conditional probability of the failure when an evidence has
been introduced can be used to indicate the confidence
level of, and therefore to rank, the various diagnosis. In
constrast, every logically consistent diagnosis has equal
footing in a deterministic framework. An important issue
associated with a rigorous implementation of probabilistic
diagnostic system is that of computation and storage bur-
den. It is because diagnostic inference involves computa-
tion of joint probabilities of the relevant system variables.
BBN is an efficient implementation by avoiding the stor-
age of the entire joint probability table. Instead, it uses
the causal relationships between variables and stores the
conditional probability relationships. BBN has been suc-
cessfully applied in many disciplines including engineer-

ing decision support systems.

2. Robust TRC Stabilization

2.1. Problem Formulation

Assume that the TRC can be well represented by sampling
at p (can be large) tones. The model of the IOT is of the
following form:

e(k) = φd · d(k) + φ̂ · [I + ∆(k)Wu] · u(k) (1)

y(k) = C · e(k) (2)

where u(k) ∈ �m, with m << p, is the vector of incre-
mental actuator values from the nominal control (which
would generate the nominal TRC in the absence of model
uncertainty and disturbances), e(k) ∈ �p is the TRC error
which is the deviation of the printed toner area coverage
from the nominal ones at the various tones, y(k) ∈ �n,
n << p are the samples of the TRC which can be used for
feedback, k = 0, 1, . . . is the time index. In Eq.(1),

φ̂ · (I + ∆(k)Wu) ∈ �p×m (3)

is the sensitivity of the TRC to actuator settings in which
φ̂ ∈ �p×m is the nominal sensitivity function, d(k) ∈ �nd

are the disturbances, φd is the sensitivity of the TRC to
disturbances. The actual sensitivity of the TRC to the ac-
tuator values in (3) consists of the known nominal part,
φ̂ ∈ �p×m; and the unknown uncertain part, φ̂∆(k)Wu ∈
�p×m, where Wu ∈ �m×m is a matrix of given uncer-
tainty weights and ∆(k) ∈ �m×m is a possibly time vary-
ing multiplicative uncertainty. By letting ∆(k) ∈ �m×m

be undefined and arbitrary, Eq.(3) describes a family of
printers which have different characteristics due to vari-
abilities in manufacturing and operating conditions.

The nominal sensitivity φ̂ can be obtained by averaging
the Jacobian linearizations about various operating points
or by taking the least squares fit to a factorial experiment.
The disturbances d and φd which is the sensitivity of the
TRC to d, can be defined to be quite general. For example,
d(k) ∈ �p can be arbitrary and which have effect on a
local region on the TRC: Let φd(i, j), 1 ≤ i ≤ p, 1 ≤
j ≤ nd denote the i-th row, j-th column of φd, and let the
disturbance sensitivity φd ∈ �p×nd to be defined by:

ζ(i, j) = exp− (i−j)2

2σ2 , φd(i, j) =
ζ(i, j)∑p

k=1 ζ(i, k)
. (4)

where σ determines the width of the Gaussian functions.
If U(z) = K(z)Y(z), where K(z) is some linear

feedback controller (z is the z-transform variable), then the
closed loop system can be expressed as a Linear Fractional
Transformation (LFT) as in Fig. 2 where P is a known
matrix based on nominal knowledge of the system. In this
setting, the general goal is to find a controller K(z) so that
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Figure 2: LFT representation of linear system model

under the “worst” case scenario for as large a class of un-
certainty ∆(·) as possible, the induced 2-norm from d(·) to
the weighted TRC error Wee(·) is minimized. One con-
straint, however, is that the controller must be causal i.e.
control action u(k) should only depend on past measure-
ments y(k − 1),y(k − 2),y(k − 3), . . . ,.

2.2. Robust Static Performance

The controller design is much simplified by making use
of the static nature of the xerographic process, and the fact
that disturbances are generally slowly varying. In this case,
the performance optimization objective can be restricted
to the steady state and it becomes a convex problem. To
wit, suppose that the disturbances d(k) is constant and
that the controller K(z) is stabilizing. Thus, under steady
state condition, d(k) = d∞ = constant, u(k) = u∞ =
constant, e(k) = e∞ = constant, y(k) = y∞ = constant,
u∞ and y∞ are related by the D.C. gain of the controller
K∞ = K(z = 1):

u∞ = K∞y∞.

Notice that in the steady state, ∆(k) in (1) is also a con-
stant, ∆∞ (although it may depend on K∞). Since Wee∞

is linear with respect to d∞, there exists some matrix,
F(P,∆∞,K∞) ∈ �p×m:

Wee∞ = F(P, ∆∞,K∞) · d∞.

The following steady state performance index will be op-
timized:

γ̄(K∞) = min
{

γ :
sup

‖∆∞‖ ≤ 1
γ

σ̄ (F (P,∆∞,K∞)) ≤ γ

}

(5)
where σ[·] denotes the maximum singular value (induced
2 norm) of its argument. The optimal controller D.C. gain
is

Kopt := argmin
K∞ γ̄(K∞).

The performance index (5) is used instead of the more
common index in which the bound on the size of ‖∆∞‖
is specified because the size of the uncertainty is gener-
ally not easy to estimate. By minimizing the performance
index in (5), we aim to simultaneously improve the worst
case performance and increase the size of the uncertainty
set ‖∆∞‖. The weighting matrices Wu and We generate
the frontiers of the tradeoff between robustness and perfor-
mance. If γ̄opt := γ̄(Kopt), then for all uncertainties satis-
fying ‖∆∞‖ ≤ 1/γ̄opt, the steady state TRC error Wee∞

will be less than γ̄opt‖d∞‖2.
Notice that the response of the TRC at the measured

tones conforming to the nominal, i.e. y = 0, does not
imply that ‖Wee‖2 is minimized. It is because y can be
made to vanish at the expense of TRC errors at the unmea-
sured tones.

2.3. Two-step Controller Design

Step 1: Finding Kopt Without going into details, the op-
timal D.C. gain Kopt can be found via the method of bi-
section using a result in [5]. For details, the readers are
referred to [2]. In this procedure, we first find a lower and
upper bound γl and γu so that γl < γopt ≤ γu. Since
the optimal solution is characterized by its satisfaction of
a pair of Linear Matrix Inequalities (LMI), and the opti-
mization problem is convex, the bounds are successively
halved by checking the conditions until γu − γl is within
the desired accuracy. Finally, the optimal gain Kopt can be
computed based on γ = γu according to [5].
Step 2: Realizing K(z) The proportional controller u(k) =
Kopty(k) cannot be realized because y(k) is not available
until u(k) is issued. A causal controller K(z) in which
u(k) does not depend y(j ≥ k) must now be defined
with the property that the optimal D.C. gain Kopt is also
achieved. Let a realization of the controller be of the form:

u(k + 1) = A u(k) + B y(k). (6)

The controller will have the suboptimal D.C. gain if:

Kopt = (I − A)−1 B.

The nominal closed loop system, i.e. when ∆(k) = 0, will
be stable if: ∣∣∣ eig

(
A + BCφ̂

)∣∣∣ < 1.

Define L to be the nominal loop gain: L = KoptC · φ̂,
then, the two design conditions become:

|eig (L + A (I − L))| < 1 (7)

B = (I − A)Kopt. (8)

If I−L is non-singular, it can be shown [2] that the closed
loop system matrix (Ac below) of the nominal system,

Ac = L − A(I − L) = A + BCφ̂ (9)
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Figure 3: Response of system using proposed robust controller
with eigenvalues at 0.8.

as well as the eigenvalues can be chosen arbitrarily. Hence,
one can first choose a desirable stable closed loop matrix
Ac and then solve for A and B from (8) and (9). At this
point, the stability of closed loop system for the various
uncertainty (possibly time varying) with ‖∆(k)‖ ≤ δ, can
also be evaluated (see [2] for details).

2.4. Experimental Results

The proposed controller has been experimentally tested on
a legacy digital xerographic Image Output Terminal (IOT).
In this setup, the grid voltage of the charging system, the
laser power in the exposure system and the bias voltage in
the development system are available as xerographic actu-
ators, and a single TAC sensor is available for sampling the
TRC. In order to evaluate the controller performance, the
entire TRC needs to be measured. This is achieved by pro-
ducing an image of continuously increasing tone (a wedge)
in the region of the photoreceptor which is ordinarily used
for customer images. The wedge is printed under and is
read by the TAC sensor. It is therefore possible to sample
the TRC at as many tones as we desire. In our case, the
TRC is judged to be adequately approximated by p = 34
uniform samples.

In our controller design, it was assumed that the dis-
turbances are d(k) ∈ �nd=34 which affect the TRC via
the normalized Gaussian bumps as in (4) with the width of
each of the bump being σ = 2.5 tones. It was also as-
sumed that the TRC measurements at tone5, tone17 and
tone30 were available for feedback control.

Using performance and robustness weightings of We =
I and Wu = 0.1I, an optimal controller D.C. gain Kopt

that optimizes (5) was designed. The closed loop system
matrix in (9) was chosen to be Ac = diag(0.8, 0.8, 0.8),
and the controller coefficients A and B in (6) were subse-
quently obtained by solving Eqs.(9) and (8). To simulate
the effect of the disturbances, the desired nominal TRC
was artificially shifted so that

Φd(tone) ← Φorig
d (tone) − 0.02 · tone.

A B

C

Figure 4: A simple 3 node BBN

where Φorig
d was the TRC when the nominal actuator set-

tings were used. As shown in Fig. 3, the TRC converged
quite closely to the shifted desired TRC.

3. Bayesian Belief Network (BBN) Model for
the xerographic printer

3.1. Introduction to Bayesian Belief Network (BBN)

A process, such as xerography, can be described using a set
of system variables, such as PR charged voltage, scorotron
grid voltage, toner density etc. Joint probabilities of these
variables describe the interrelationships between them. A
Bayesian Belief Network (BBN) is a compact representa-
tion of the joint probability distribution of the various sys-
tem variables [1]. Formally, a BBN is an acyclic directed
graph (DAG) with nodes connected by arcs. The nodes are
random variables whose values represent the observed or
unobserved system variables. The arcs represent the causal
relationships between variables and are quantified by the
conditional probabilities that a child node attains a certain
value given values of all its parent nodes. The diagnostic
inference process is to determine the combination of vari-
ous system variables that can generate the observed values
of some of the nodes. It is performed by the application of
Bayes rule in probability theory.

Because each conditional probability function that the
BBN remembers generally involves only a small subset of
the variables in the network, a BBN significantly reduces
the storage required for the joint probability distribution,
and the computational burden associated with the infer-
ence process.

A simple 3 node BBN is shown in Fig. 4. Suppose that
each node can take on values of yes or no. It says that
the value of node C depends on the outcomes of nodes A
and B according to a joint probability table: P (C|A,B)
which has 8 entries. To specify the BBN in figure 4 com-
pletely, one must specify P (C|A,B) as well as the prior
probabilities of the ancester nodes, P (A) and P (B).

For example, let P (C = yes|A = yes, B = yes) =
0.95, P (C = yes|A = yes, B = no) = 0.85, P (C =
yes|A = no, B = yes) = 0.90, P (C = yes|A =
no, B = no) = 0.02. The entries for P (C = no|A,B)
can be computed from P (C = no|A,B) = 1 − P (C =
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Figure 5: A BBN for a single solid color xerographic printing
process. Thick nodes are actuated variables, dashed nodes are
observed variables.

yes|A,B). Let also P (A = yes) = 0.1 and P (B =
yes) = 0.1. Suppose that we observe the evidence that
C = yes. The diagnostic problem is to estimate the values
of A and B. Using Bayes rule in probability, we find that
P (A = yes|C = yes) = 0.47, P (B = yes|C = yes) =
0.49, and P (A = yes, B = yes|C = yes) = 0.052.
From these, we can conclude that while it is reasonable to
infer that A = yes or B = yes, it is unlikely that both
A = yes and B = yes.

3.2. Continuous BBN for a Xerographic Printer

A simple BBN that describes the single solid color xero-
graphic printing process is shown in Fig. 5. Notice that the
BBN reflects how the processes of charge, expose and de-
velop interact with each other sequentially. Vs and Vp de-
note the voltages of the photoreceptor after charging, and
exposure respectively, “DMA” denote the toner mass area
density after the development process, and D0 denotes the
density of the printed image on the final medium. Di is the
density of the desired image to be printed.

To complete the description of Fig. 5, we must spec-
ify the the probabilities of a child node conditional on its
parents. In our model, these are obtained from physical
models given in the literature. To illustrate, the ideal phys-

ical model for the charging subsystem is given by [4]:

Vs = f(Vi, Vg, I0, C, ν)

:= Vg

(
1 − e

− I0
Vg

Cν
)

+ Vie
− I0

Vg
Cν (10)

where Vg is the scorotron grid voltage, Vs is the exit volt-
age on the photoreceptor (PR), I0 is a scorotron response
parameter, C is PR capacitance, and ν is the PR’s speed.
In Eq.(10), Vg is the actuator (manipulated variable), and
the rest of the parameters are liable of being in faulty and
degraded states.

Notice that Eq.(10) is a mathematical idealization. To
model the uncertainty in the actual relationships, we define
the conditional probability:

P (Vs|Vi, Vg, I0, C, ν) = N [f(Vi, Vg, I0, C, ν), σs] (11)

where N(m,σ) denotes a Gaussian distribution with mean
m and standard deviaton σ. Thus, the ideal mathematical
description of the process in Eq.(10) specifies the mean
and σs specifies the reliability of this description. For our
model, σs is guessed to be 1% of the feasible range of Vs.
These are chosen for convenience only. If experimental
or field data is available, distributions other than Gaussian
distribution, or other values of σs can be used in Eq.(11).

Conditional probabilities for the exposure and the de-
velopment processes are also specified similarly. BBN
models for color printing systems can be composed by
combining four copies (one for each of CMYK) of the
BBN in Fig. 5, and using a color subtraction model to
describe the combination of the primary colors to form the
final color.

3.3. Discretization of BBN

The BBN model described in Section 4 is a continuous
BBN since the node variables can take on values in a con-
tinuum. Currently, our ability to implement continuous
BBNs is severely limited: conditional distributions can only
be linear functions of the parent nodes. For continuous
BBNs with arbitrary nonlinear conditional probability dis-
tributions, the BBNs must first be approximated by a dis-
crete BBN. A discrete BBN is one in which each node
can only take on finite number of values (states). The dis-
cretization process amounts to partitioning the continuous
probability distribution function into intervals.

The propagation and updating of BBN is a NP-hard
problem. The computational burden increases exponen-
tially with the number of possible states at each node. The
amount of memory for storing tables of conditional proba-
bilities also increases dramatically. It is therefore, impera-
tive that when the continuous BBN is discretized, the num-
ber of states at each node is kept at a minimum. To maxi-
mize the usefulness of discrete states, a maximum entropy
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criterion [3] is adopted in the determination of the optimal
partition of the range of each continuous variable.

Suppose that the continuous range of the variable as-
sociated with a node has been partitioned into n segments,
a1, a2, . . . an. Let the prior probability of the occurrence
of the i-th segment ai be pi. We can view the discretized
node as a information source with entropy given by:

H(S) = −
n∑

i=1

piLog(pi) (12)

In our method, partitions are defined so that H(S) is opti-
mized. It is easy to see that the optimal solution is such
that each interval is as likely to happen as the other: p1 =
p2 = . . . = pn. The optimization of H(S) ensures that
each outcome of the discrete value of the variable provides
as much information as the next.

Notice that to discretize a continuous node “A” opti-
mally, the prior probability P (A) is needed. This is a com-
putationally intensive task. For example, to discretize the
Vs node in Fig. 5, one must first have obtained the P (Vg)
using marginization

P (Vg) =
∑

Vi,Vg,ν,C,I0

P (Vg, Vi, Vg, ν, C, I0) (13)

or similar procedures (e.g. using Bayes rule). In generally,
the joint probability used in Eq.(13) must be computed re-
cursively. We have developed an offline recursive algo-
rithm in MATLAB (Mathworks, MA) that traverses the
BBN and discretizes each node using techniques of divide-
and-conquer and marginalization (see [6] for details).

3.4. Implementation on HUGIN System

HUGIN is a commercial software for implementing BBNs.
Once a discrete BBN has been specified in HUGIN, one
can introduce evidence into the software and the HUGIN
will respond with the diagnosis. The discretized BBN for
the single solid color xerographic process has been imple-
mented on HUGIN. In fact, the discretization algorithm
described above generates a file that can be read by HUGIN.

As an example, the BBN can be used in a predictive
mode in which we assign various desired image density
Di in Fig. 5 to observe the output density. A probabilis-
tic TRC can be generated this way. The near linear shape
of the mode of the TRC in Fig. 6 illustrates that the BBN
model is reasonable. In the diagnostic mode, one can use
the observed variables to estimate the states of the unob-
served variables, with which the printer’s capability can
be obtained. These in turn will inform how, the control
strategy should be reconfigured to make the best use of the
printer’s current (degraded) capability.

Figure 6: The probabilistic Tone Reproduction Curve. Probabil-
ity of theoutput density given input density

4. Conclusions

We have outlined two strategies for the management of the
xerographic printing process in the presence of moderate
disturbances or system faults and component degradations.
In the first strategy, robust control concept is applied to the
stabilization of the tone reproduction curve (TRC). The
key feature of this problem is that only a small number
actuators and samples of the TRC are available for feed-
back control. The second strategy involves diagnosing the
fault conditions and the degree of degradation of the sys-
tem. For this purpose, a discetize Bayesian Belief Network
model has been developed based on the physical models.
Although we have focused on single primary color print-
ing, similar ideas should also apply to color printing re-
quiring combinations of primary colors.
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