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Abstract 

This paper describes an automatic approach for developing 
models for the xerographic process based on experimental 
data. A  nonlinear system model defining a vector mapping 
between the actuators  and performance metrics is 
constructed using multivariate adaptive  regression splines 
(MARS). Multiobjective  optimization techniques based on 
an underlying adaptive simulated  annealing approach are 
discussed which are then used for determining  the Pareto-
optimal setpoints of xerographic actuators that optimize 
image quality metrics. 

The overall approach is applied to perform the 
automated setups of a  high-end color machine, namely the 
Docucolor40. Experimental results  show that high quality 
machine setups can be performed in an efficient and 
automated manner.  

Introduction 

A critical problem with copiers and printers that use the 
color xerographic process is the ability to nominally setup 
the machine to produce high quality prints. This step 
requires that the values of the various elements (such as 
current, voltages, laser illumination characteristics) that 
comprise the xerographic subsystem of machines be set to 
some nominal value.  

In this paper, an approach to performing semi-
automated setups will be developed and described. The 
application of MARS (Multivariate Adaptive Regression 
Splines [3],[4]) to modeling the color xerographic will be 
discussed. The application of multiobjective optimization 
techniques to the inverse problem of determining the best 
setpoints will be demonstrated. Results will be presented 
from experiments performed on the DocuColor-40 machine 
that demonstrate the efficacy of the approach. 

Problem Definition 

Setup of a machine involves several steps in which the 
different nominal operating setpoints of the machine are 
determined via a series of steps to produce desired color 
images on the final substrate. This includes setting up the 
machine so that the desired solid area and halftone patches 
are produced for all colors, the desired highlights are 

obtained and the desired color balance is obtained. The 
machine setup is done for each of these image quality 
attributes and a set of parameters that control these 
attributes are “tuned” to obtain the desired response. In 
many of the present machines, the machine is setup for a set 
of image quality attributes sequentially. Thus for example, 
the machine may first be setup to get the right solid area 
response and halftone patches and once that has been 
accomplished to satisfaction, the machine is setup to obtain 
the desired highlights and other image quality attributes. 
While the control system of the machine automates much of 
this task, human assisted and manual adjustment must still 
be made to compensate for localized factors such as 
component wear, environmental conditions, and customer 
visual preferences 

Suppose, that the image quality attributes under 
consideration in a particular step of the setup process are 
denoted by a vector p = [p1,pn, …, pn]  where p ε Rn . In 
other words one is interested in n image quality attributes. 
For example, in a particular step of the setup process, these 
could be the density of four 70% halftone patches namely, 
cyan, magenta, yellow and black. In that case, the vector 
describing the objectives of our optimization process would 
be a four dimensional vector.  

Also suppose that the parameters used to setup the 
machine are denoted by x=[x1,x2, …, xm] where xεRm. In 
other words, there are m parameters that have to be tuned to 
produce desired image quality attributes p which depends 
on the parameters x. Also suppose that each of these 
parameters x I can take on a value between  ximin and ximax. 
The goal of the setup process can then be described as 
follows: 

Find the appropriate values of each parameter xd such 
that the image quality attributes attain the desired values pd. 

Solution Procedure 

The xerographic process is quasi-static and nonlinear i.e. the 
output response of the system as measured by image quality 
metrics is a nonlinear function of the system input variables 
(such as voltages, currents and beam-power of the laser) and 
drifts slowly enough in time so as to be assumed static at 
any given instant of time. 

IS&Ts NIP16: 2000 International Conference on Digital Printing Technologies

164

IS&Ts NIP16: 2000 International Conference on Digital Printing Technologies Copyright 2000, IS&T



 

 

In this section, an experimental modeling technique 
called MARS [3],[4] will be introduced and applied to 
model the xerographic system. 

Xerographic System Identification Using MARS 
MARS  [3],[4] is a method for flexible regression 

modeling of high dimensional data. It relies on fitting data 
to an expansion in product spline basis functions where the 
number of basis functions as well as parameters associated 
with each one (including product degree and knot locations) 
are automatically determined by the data. The model 
produced by this technique is continuous with continuous 
derivatives. The method has other attractive properties of 
rapid computability and also provides estimates on the 
degree of additive contributions and those associated with 
different multivariable interactions that enable 
understanding of the fundamental nature of the subsystem 
that generated the data. 

Multiobjective Optimization 
Once a model of the xerographic system is obtained, 

the inverse problem of obtaining the optimal setpoints that 
will provide the desired image quality is solved using 
multiobjective optimization techniques [2]. 

Pareto-Optimality 
Let us assume that the design variables of interest are 

represented by the vector:   

  x=[x1,x2,...,xn]
T            (4) 

The performance criteria are represented by the vector: 

  f(x)=[f1(x),f2(x),...,fm(x)]T   (5) 

The equality constraints are given as: 

  g(x)=[g1(x),g2(x),...,gp(x)]T = 0      (6) 

and the inequality constraints are denoted by: 

  h(x)=[h1(x),h2(x),...,hq(x)]T <= 0        (7) 

The design goal is to find a vector of design variables 
x* that simultaneously minimizes all the components of the 
objective function vector f(x) without violating the 
constraints specified by equations (5) and (6). 

A vector x* is Pareto-optimal if and only if there is no 
other vector x with the characteristics: 

 

 fj(x) <= fj(x*)       for all j ε {1, ... , m} 

and 

 fj(x) < fj(x*)      for at least one j ε {1, ... , m} (8) 

 
A Pareto-optimal solution (for the multi-objective 

minimization problem) is such that it is not possibly to move 
feasibly from that solution to any other point in the design 
space without increasing at least one of the performance 
criterion.  Figure 1 shows the Pareto-optimal solution curve. 
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Figure 1. Mapping from the design variable space to the design 
objectives space showing the Pareto-optimal curve 

Goal Programming Method of Obtaining Pareto-optimal 
solutions 

The multi-objective problem of generating  Pareto-
optimal solutions [2] for the performance criteria vector f(x) 
is accomplished by formulating a scalar substitute problem,  

  min p[f(x)]      (9) 

where the function p is called a preference function whose 
arguments are the components of the vector f(x). There are 
numerous methods of formulating the preference function 
such that minimizing the preference function yield a  
Pareto-optimal solution. In the following subsection, the 
goal programming method for obtaining Pareto-optimal 
solution will be described. The goal programming  method 
uses vector norms or measures of distance in the space of 
objective functions to scalarize the vector minimization 
problem into a scalar minimization problem. The substitute 
problem is then written as:  

p[f(x)] =  [Σ |fj(x) - yj|
n]1/n     1 <= n =< ∞   (10) 

Usually, the value of n is chosen to be 1 or 2.  

Application to Color Setup of Docucolor-40 

An example of the approach to performing setups in color 
machines will be demonstrated for the setup step DC919 for 
the Docucolor 40 machine. The goal of this setup is to 
obtain zero across the page variation in print quality. The 
four input parameters available for setting up for minimal 
inboard/outboard variation are laser beam-power of four 
laser raster output scanners that write the image on the 
photoreceptor. Each of these four “knobs” can take on a 
value between 0-255. These parameters x=[x1,x2,x3,x4] were 
chosen to vary between 0-200. A L9 orthogonal array [1] 
was used to design the experiments and the difference 
between the color of two patches on a standard test pattern 
(one on the inboard side and one on the outboard side of the 
page) was chosen as the desired responses. The goal of this 
setup process is to obtain the setup values for x so that the 
L,a,b (a metric for measuring the color value of patches) 
values of the two patches are the same. 

The machine was run at the setpoints given by the L9 
orthogonal array where the three levels chosen for each 
“knob” was 0,100 and 200 and the inboard/outboard L,a,b 
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values were measured. For this experiment this was done by 
first scanning the image as tiff file using a scanner and then 
processing the image to obtain the L,a,b values. (Other 
methods for measuring the L,a,b values such as using a 
spectrophotometer can also be used). 

A nonlinear MARS model was obtained that captured 
the dependence of each of the six output measured 
responses (L,a,b for the inboard and L,a,b for the outboard). 
Let us assume that the relationships are denoted as 
L1(x),L2(x),a1(x),a2(x),b1(x) and b2(x). The objective of 
this step of the DC40 setup is to obtain a setup point that 
minimizes the difference between L1 and L2, a1 and a2, and 
b1 and b2. 

The results of the experiment are shown below in Table 
1. 

Table 1 : Experimental Data 
 Input Variables Inboard Measure Outboard Measure 
 Bk Y M C L a b L a b 
1 0 0 0 0 63.10 3.70 9.29 75.30 1.51 11.79 
2 0 100 100 100 72.47 3.00 8.84 77.42 2.03 11.14 
3 0 200 200 200 80.95 3.08 6.89 80.13 1.67 11.81 
4 100 0 100 200 76.92 4.53 23.78 79.04 1.60 16.70 
5 100 100 200 0 72.47 -9.98 2.91 77.89 -2.29 9.55 
6 100 200 0 100 69.00 13.09 -2.38 75.80 4.35 8.02 
7 200 0 200 100 76.75 -8.39 22.03 77.73 -2.42 16.11 
8 200 100 0 200 72.44 13.76 12.99 77.21 5.25 13.56 
9 200 200 100 0 69.10 -2.17 -8.57 76.52 0.14 5.48 

 
 
Thus a goal programming approach [2] using adaptive 

simulated annealing method [5],[6] was used to 
simultaneously minimize the difference for each of the three 
objectives using adaptive simulated annealing algorithm. 
(This algorithm has the capability to search for global 
minima within the space of the design variables without 
getting “stuck”  at a local minima). The results of the 
optimization and the corresponding results of running the 
machine at the setpoint  to obtain a verification print are 
shown below. 

Table 2: Comparison between analytical predictions and 
experimental observations. 

Pareto-Optimal Setpoints 
Bk Y M C 
115 118 161 197 

 
 Inboard Measure Outboard Measure 
 L a b L a b ∆E 

Predicted 79.58 3.11 15.88 79.16 2.24 14.03 2.08 
Measured 79.3 1.7 13.7 79.3 1.8 13.7 0.1 
 

The results of setting up the machine at the Pareto-
optimal setpoint is shown in Table 2. Through this example, 

we show that it is possible to setup the machine to less that 
2.0 ∆E inboard variation.  

Conclusions 

This approach is generic and can be extended to 
simultaneously setup a machine for any number of image 
quality attributes. If the particular printing process has 
slowly varying parameters (quasi-static), this algorithm 
(MARS or linear model with an optimizer to obtain the 
appropriate setpoints) also provides a method for 
controlling the quasi-static process. The models can also be 
linearized about the setpoints determined above for use in 
linear controller design. 
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