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Abstract 

Models of photoconductors used in xerography are based on 
donors with a Gaussian energy distribution whose width is 
inferred from the zero-field mobility, µ(T). Exact mean 
dwell times for Marcus, Miller-Abrahams and symmetric 
rates are obtained at zero field for lattices with energetic, 
positional and orientational disorder. Monte Carlo 
simulations of µ(T) and hopping rates bring out the role of 
disorder-induced steps. Evidence for such steps in 
molecularly doped polymer comes from the concentration 
dependence of µ(T). Transport involves fast, repetitive steps 
with small displacement and geometrical disorder increases 
the T dependence of µ(T). Present analyses of µ(T) 
overestimate energetic disorder. 

1. Introduction 

Time-of-flight (TOF) experiments measure the mobility 
µ(E,T) of holes in molecularly doped polymers (MDPs), the 
photoconductors used in xerography.1-5 The transit time t1/2 

for crossing a film of thickness L in applied field E gives µ 
= L/Et1/2. Similar mobilities with remarkable E and T 
dependencies are found for many donors and polymers. The 
Gaussian disorder model of Bässler and coworkers2,3 focuses 
on hopping between sites with a normal energy distribution 
g(ε,σ) and σ ~103K. The physical picture of localized states, 
nonadiabatic hole transfer and g(ε,σ) is widely used and 
retained in this paper. It is consistent with, but leaves open, 
such basic issues as the rate law for hopping, the nature of 
geometrical disorder, the origins of energetic disorder and 
specific donor-polymer interactions. The zero-field µ(T) 
inferred from E > 0 data has a special role experimentally: 
the slope of lnµ(T) vs. T-2 is2 –4σ2/9k2 or, alternatively, the 
slope vs. T-1 is5 the activation energy in polaron models.  

We present below a new theoretical approach to µ(T) 
that proves geometrical as well as energetic contributions to 
the slope of lnµ(T). Our analysis brings out the role of 
disorder-induced steps and accounts naturally for published 
data on variable donor concentration in the same polymer. 

Monte Carlo (MC) simulations of random walks (RWs) 
have been used to model the mobility.1-3 The limitations of 
MC are slow convergence and having to specify all 
parameters at the outset. Comparison with experiment has 
necessarily been indirect. We also require RWs for µ(T). In 

addition, we obtain the exact zero-field dwell time, 〈τ(β)〉, 
for g(ε,σ) and Miller-Abrahams (MA), symmetric and 
Marcus or small polaron rates. Analytical results lead to 
disorder-induced steps and to revised interpretation of MDP 
transport. 

Our treatment rests on normal transport and thermal 
equilibrium. The appearance of t1/2 in linear plots of current 
vs. time indicates normal transport in MDPs, with finite 
dwell time 〈τ(E,T)〉 and displacement 〈z(E,T)〉 per step after 
many steps. Normal transport is assured6 for a Gaussian 
g(ε,σ), but the time scale is set by disorder and diverges as 
βσ → ∞. The mobility and its E = 0 limit µ(T) are 
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Early work on inorganic photoconductors showed 
dispersive transport, for which (1) fails and transit times 
require log-log plots. Scher and Montroll7 introduced a 
continuous time RW with divergent 〈τ(T)〉 for dispersive 
transport, which Schmidlin8 related to an exponential energy 
distribution. Normal transport is expected for Gaussian 
g(ε,σ) and confirmed in MDPs by TOF profiles that become 
broad or dispersive only in thin films, at low T or at high 
field. 

The Einstein relation between mobility and diffusion 
shows that z0(E,T) for the ordered lattice goes as E/T. The 
ratio χ(E,T) = z0(E,T)/〈z(E,T)〉 > 1 represents reduced 
motion due to disorder or, alternatively, to extra steps for 
the same displacement. The zero-field mobility is formally 
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with Tr = ea0

2/6k for charge e and mean-square displacement 
a0

2. The ordered lattice has χ = 1, shorter τ0 = 〈τ(T)〉/pe(T) 
with pe(T) < 1, and spacing a < a0 when steps beyond first 
neighbors are allowed. Young9 took Tr = 295K and assigned 
σ from the slope of lnTµ/Tr vs. T-2. The mobility (2) requires 
no assumption beyond normal transport.  

As shown in Section 2, the zero-field hopping rate, 
〈τ(T)〉-1, follows from thermal equilibrium and detailed 
balance. Now g(ε,σ) facilitates analytical results for 
standard rates in an infinite lattice with energetic, positional 
and orientational disorder. RWs with the same parameters in 
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finite lattices converge10 to 〈τ(T)〉 and yield χ(T). We 
interpret disorder-induced steps in Section 3 with the aid of 
an auxiliary lattice whose spacing a’ > a0 increases with the 
overall disorder. In Section 4 we turn to mobility data in 
MDPs with variable donor concentration and show that 
disorder-induced steps reduce µ(T) more than dwell times.  

2. Mean Dwell Time in Zero Field 

We model MDPs by lattices with spacing a ~ 8Å that 
approximate the density. Donors (D) randomly fill a 
fraction p of sites; the polymer (P) fills the rest and has no 
role in the transport. The hopping rate ωnm between donors 
at n and m depends on distance, orientation and energy. 
Physical considerations suggest an exponential in rnm and τr 
= 1/Σmωrm has rates to nearby D’s with energies chosen from 
g(ε,σ). The random variables for position, energy and 
orientation are independent by hypothesis. We consider an 
infinite RW generated by ωrm. Normal transport at E = 0 
indicates an equilibrium system. The transport does not 
depend the starting point and the time spent at sites is 
Boltzmann distributed for rates that satisfy detailed balance. 

Different τr at isoenergetic sites clearly implies a 
probability that goes as 1/τr; sites with short dwell times are 
reached more often. Normalization gives τ(ε) 
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m rmr
11)(        (3) 

The average over sites with εr = ε can be taken step by step. 
The geometrical factors are p〈Ω〉exp(-γrm), where 〈Ω〉 is an 
orientational average, while the energy average is over 
g(x,σ) for rate ω(ε,x) to a site with ε’ = x. We have 
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The ω(ε,x) factors for Marcus rates with reorganization 
energy λ, symmetric and MA rates are, respectively, 
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The integrals over g(x,σ) are elementary. 
The RW generates a unique distribution h(ε) of visited 

sites for normal transport. Although h(ε) and τ(ε) depend on 
the rate law, detailed balance implies that h(ε)τ(ε) goes as 
g(ε,σ)exp(-βε). The mean dwell time is 
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The proportionality constant has dimensions of time and 
follows from ratios at ε = ε and 0. We then obtain h(ε) from 
τ(ε) in (4) and the product h(ε)τ(ε). The normalized 
distribution of visited sites for Marcus rates is10 
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The visited sites reduce to g(ε,σ) at βσ = 0, when energetic 
disorder is irrelevant. The peak shifts to –βσ2/2 and h(ε) 
narrows to σ/√2 at low T, where 〈τ〉 diverges as indicated in 
(6). Symmetric rates lead to (7) with B = σ. For MA rates, 
we know10 h(0) analytically and that suffices for (6). 

The mean dwell time (6) for Marcus rates and g(ε,σ) 
follows from (7) and (4), 
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The slower 〈τ〉 = τ0/pe of (2) is explicitly given by pe(βσ,Ω), 
without having to specify the average 〈Ω〉 or the range of 
steps in τ0. We can also view pe as dilution, since the 
hopping rate at constant T is proportional to the donor 
fraction. Other rates and g(ε,σ) yield10 different pe(βσ,Ω). 
Symmetric rates give (8) without the square root factor. MA 
rates for βσ > 2 have 1/βσ instead of the square root; the 
full expression is complicated but readily evaluated. The 
rates leave open the choice of 〈Ω〉 or τ0.  

The -ln〈τ〉 vs. β2σ2 plots in Fig. 1 show (8) for the three 
rates and have a common origin, lnp〈Ω〉. The range to βσ = 
4 covers most MDP data and λ ~ 2-3σ is typical. The slope 
vs. β2σ2 is exactly –1/4 for symmetric rates, as given by pe, 
but only approximately –1/4 for Marcus or MA rates. We 
note, first, that the expected slope of –1/2 suggested by (6) 
is reduced for all three by the T dependence of h(ε=0) and 
τ(ε=0) and, second, that T-2 extrapolations are not exact for 
MA rates. A Gaussian g(ε,σ) is convenient for exact zero-
field hopping rates that are products of energetic and 
geometrical factors. 
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Figure 1. Exact hopping rates, Eq. (8), for g(ε,σ) and symmetric, 
MA or Marcus rates; the origin is ln p < Ω>z. 
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3. Disorder-Induced Steps 

The mean dwell time increases by 1/pe(βσ,Ω) at E = 0 and 
normal transport implies eventual convergence to 〈r2〉 per 
step. Disorder generates a distribution {ωrm} of rates at each 
site and strongly correlates successive steps. The 
quantitative measure of extra steps is10 

2
0

21 /),,( arp =Ωβσχ −     (9) 

where a0

2 ≥ a2, the mean square displacement per step of the 
ordered system, is slightly larger than a for exp(-γa) with γa 
~7. To simulate χ, we generate RWs and record the position 
after groups of N0 steps, with N0 = 104 or 105 steps, 
respectively, for modest and strong disorder. An N-step 
walk gives N/N0 displacements whose average per step is 
〈r2〉. 

Normal transport ensures convergence for sufficiently 
large N and N0 that, however, increase rapidly with 
disorder. Thermodynamic simulations11 for g(ε,σ) fail in 
finite lattices with increasing βσ because there are too few 
sites below the mean energy, -βσ2. Diffusion simulations12 
fail as p → 0, even without energetic disorder, because 〈r2〉 
requires very long RWs. We keep track of the mean dwell 
time, its second moment, and several energy moments of 
visited sites. Convergence with N to 〈τ(β)〉 in (8) and h(ε) in 
(7) gives strong checks.10 We increase N0 until the decrease 
of 〈r2〉 is small, but convergence remains an issue. 
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Figure 2. Zero-field mobility, Eq. (2), for g(ε,σ) and the Marcus 
rates with geometrical disorder p, < Ω>. The points are Eq. (8) 
and simulated χ in Eq. (9); the lines are least squares fits.. 

 
 
Quite generally, χ(βσ,p,Ω) increases with disorder. The 

lnT µ(βσ,p,Ω)/Tr vs. β2σ2 results in Fig. 2 are based on 
exact 〈τ〉 and simulated χ for Marcus rates with σ = 103K, λ 
= 0.2 eV, γ-1 = 1.2Å, an fcc lattice with a = (12/√2)Å, and 
the indicated p and 〈Ω〉 for a simple model of orientational 
disorder.13 Geometrical disorder (p, 〈Ω〉 < 1) increases the 

slope by ~20%. Previous assignments of σ or activation 
energies from such slopes are too high. At fixed σ and 〈Ω〉, 
µ(T) at p = 0.50, 0.20 and 0.08 illustrates the concentration 
dependence discussed in Section 4.  

Disorder reduces the mobility by slower hopping 
pe(βσ,Ω) in (8) and extra steps χ(βσ,p,Ω). Extra steps 
dominate at E = 0, as shown below. Although easily 
understood, the role of disorder-induced steps is difficult to 
quantify. To facilitate the interpretation of χ, we use it to 
define an ordered lattice with the same µ(T), spacing a’ and 
nearest-neighbor steps. The reduction due to disorder leads 
to 
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We solve for a’/a0 and list results in Table 1.  
 

Table 1. Simulated a’/a0, Eq. (10), for Marcus rates for 
the systems in Fig. 2. 

 
βσ 

p = 1.0 
〈Ω〉 = 1.0 

p = 0.50 
〈Ω〉 = 0.4 

p = 0.20 
〈Ω〉 = 0.4  

p = 0.08 
〈Ω〉 = 0.4 

0.2 1.00 1.44 1.85 2.36 
2.0 1.29 1.74 2.15 2.69 
3.0 1.59 2.08 2.51 3.00 
4.0 2.04 2.54 2.95   >3.4 
 
The ordered case (pe = χ = 1) has a’ = a0. The rhs of 

(10) decreases with a’ for γ’a0 > 2, which is well satisfied10 
by γ’a0 ~ 7 in MDPs and γ’ ~ 0.95γ. The point is that known 
pe and simulated χ uniquely fix a’. On the contrary, a’ > a0 
merely specifies the disorder level produced by some 
combination of energetic and geometrical disorder. The 
auxiliary lattice has the same µ(T) by construction, but 
entirely different dynamics. We are replacing extra steps at 
rate 〈τ〉-1 with slow steps exp(-γ’a’) in a lattice whose 
mobility is elementary. 

Modest disorder a’/a0 < 2 perturbs the three-
dimensional RW. The mean separation increases as c =  
ap-1/3 in MDPs and as a0pe

-1/3 in the auxiliary lattice. The pe > 
0.1 entries in Table 1 are 20-30% less than the mean 
separation, which gives a lower bound for µ. For stronger 
disorder, a’/a0 increases more slowly as pe

-1/6. The range of 
disorder in Table 1 can be approximately fit10 to 
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We reiterate that χ gives a’ in (10). Thus (11) is 
actually an interpolation suggested by the auxiliary lattice. 

4. Discussion 

We summarize in Table 2 dilution studies of D(p):P(1-p) 
systems with variable donor concentration. The donors are 
aromatic amines whose acronyms are given in the refs.; PS 
is polystyrene and PC is polycarbonate. The indicated range 
corresponds to modest disorder for p > 10%, when a D 
neighbor is likely, and extends to p = 1.7%. Dilution is 
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typically shown as lnµ0/c
2 vs. c = ap-1/3, the mean separation 

between donors. The prefactor mobility µ0 is the intercept at 
T-2 = 0. The slopes are taken as wavefunction overlap, but 
extra steps due to disorder is the proper interpretation. 

The implicit rationale for lnµ/c2 vs. c plots is clearly 
another lattice with c > a and slow steps. The simple scaling 
with p is generalized in pe(βσ,Ω) to incorporate dilution due 
to anisotropic hopping or low-energy sites at low T. The 
slope of lnµ/(a’)2 vs. a’ is –γ’ ~ –0.8Å-1 according to (10). 
Since modest disorder leads to a’ ~ 1.5c, the expected slope 
vs. c is about –1.2Å-1 for all D(p):P(1-p) systems with 
modest disorder. The reported slopes in Table 2 are in this 
range and reflect, as a first approximation, the exp(-γr) 
dependence of hopping rates. The crossover to pe

-1/6 implied 
by the simulations may follow from detailed study over a 
wide range of p. 

More quantitative results for disorder-induced steps 
require approximations. Plots of lnµ0(T) vs. T-2 yield σ(p) in 
D(p):P(1-p) systems2,9 and the intercept µ0 may not be exact. 
Similar but not identical σ and Ω are expected on physical 
grounds. Equal σ, Ω at constant T leads, independent of the 
rate law, to simple mobility ratios for p1 > p2 in (2) 
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Since µ and p are measured, we have a direct experimental 
estimate of χ. 
 
Table 2. Mobility of D(p):P(1-p) Systems: slope of lnµµµµ0/c

2 
vs.  c = ap-1/3  

D:P ∆p(%) Slope (Å-1) Ref. 
TTA:PS 1.7-50 –1.12 9 
TTA:PC 10-50 –1.06 9 
TAPC:PC 10-100 –1.22 14 
DEH:PC 8-70 –1.18 5 
MPMP:PS 20-80 –1.8 15 
MPMP:PC 20-80 –1.9 15 
HDZ-F:PS 7-65 –1.33 16 
DEASP:PC/PS 10-70 –1.67 17 
TPM:PS 10-53 –1.67 18 
TASB:PS 10-50 –1.67 19 

 
  
Young9 studied TTA(p):PS(1-p) from p = 50 to 1.7%,   

where TTA is tritolylamine. As shown in Fig. 19 of ref. 9, 
µ0 decreases by almost 108 over this range; p1/p2 ~ 30 is a 
small fraction of χ2/χ1 ~ 106. The 300K decrease in Fig. 13 
is comparable, from 7.4x10-4 cm2/Vs at p = 50% to 10-11 
cm2/Vs at 2 or 2.5%, whose E > 0 mobilities extrapolate to 
the same intercept. The dilute system again needs ~106 more 
steps. The mobility (2) is linear in 〈τ〉, and hence in pe, while 
χ is exponential in pe in (11). Disorder-induced steps 
suppress zero-field transport. They are less effective for E > 
0, since a forward bias eventually forces χ(E,T) ~ 1.  

Figure 2 parallels the TTA(p):PS(1-p) data in Fig. 13 
and Table 1 of ref. 9 for p = 50, 30, 20, 10% and 200 < T < 

400K. Slopes at constant σ increase with dilution. The 
measured slopes increase even more, by 40%, and point to 
increasing σ(p). The calculated change of µ0(p1)/µ0(p2) is 36 
between 50 and 8%, while the observed change is 140 
between 50 and 10%. Stronger orientational disorder may 
be needed. We are not aware of previous attempts to model 
µ0(p,Ω), the intercept of lnµ(T) vs. T-2 plots.  

Disorder-induced steps are prominent in MDP models. 
Fluctuations are also important in general. For g(ε,σ) and E 
= 0, we found the distribution h(ε) of visited sites in an 
infinite RW. The probability of visiting site r with εr goes as 
τ(ε)/τr. The hopping-rate variance is a first estimate for the 
widths of TOF profiles. The mean square dwell time is 

ε
τετε=βτ ∫ rdeh )()()( 2    (13) 

The microcanonical average of 1/Σωrm over εr = ε is 
dominated by site with the slowest rates, which is just the 
opposite of the dwell time (6). Disorder rapidly increases 
〈τ(β)2〉/〈τ(β)〉2. For Marcus rates (5), the integral (13) 
diverges for βσ2 > 2λ, as follows from the common factor 
of exp[β(λ – ε)2/4λ] for all sites. Broad TOF profiles are 
expected and seen at low temperature. A Gaussian g(ε,σ) 
does not ensure finite moments beyond the first. 
Preliminary results for dilution show (13) to be exponential 
as p → 0. The rms time 〈τ(β)2〉1/2 resembles qualitatively the 
dwell time τ’ of the auxiliary lattice. Slow steps are crucial 
for transport and hopping decreases exponentially. This 
intuitive picture does not correspond to the postulated 
models, however. Zero-field hopping in MDPs hopping 
corresponds to fast, repetitive steps with small overall 
displacement. 

In summary, we have found exact mean dwell times in 
a Gaussian energy distribution for Marcus, MA and 
symmetric rates in lattices with independent positional, 
orientational and energetic disorder. The zero-field mobility 
of MDPs is reinterpreted in terms of disorder-induced steps 
and related to an auxiliary lattice. Previous assignments of 
energetic disorder are upper bounds that neglect geometrical 
contributions. Exact dwell times show the convergence of 
MC simulations that generate χ(βσ,p,Ω) numerically and 
that can be used for E > 0. We anticipate modeling µ(E,T) 
in donor:polymer systems with variable filling p. 
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