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Abstract With recent advancements in halftoning technology,
binary images can now be represented using the AM-FM
In this paper, we introduce a novel technique for generatinggybrid, green-noisé.Green-noise halftones are stochastic
green-noise halftonestochastic dither patterns composeddither patterns composed of homogeneously distributed
of homogeneously distributed pixel clusters. Althoughminority pixel clusters (Fig. 1 (bottom)). By clustering
techniques employing error diffusion have been proposegixels of like color, green-noise can sacrifice spatial
previously, the technique here employs a dither arrayesolution for pattern robustness. Green-noise can,
referred to as a green-noise mask which greatly reduces ttieerefore, create images with less blurring than AM and
computational complexity formerly associated with greenwith more resistance to printer distortions than FM.
noise. Compared to blue-noise masks, halftones genera
with green-noise masks are less susceptible to print
distortions. Because green-noise constitutes patterns w
widely varying cluster sizes and shapes, the techniq
introduced here for constructing these green-noise masks
tunable, that is it allows for specific printer traits, with small
clusters reserved for printers with low distortion, and larg
clusters for printers with high. Being that blue-noise is &
limiting case of green-noise, this new technique can eve
create blue-noise masks.

Introduction

Digital halftoning is the technique employed to conver
images from continuous-tone to binary. Desktop printers
such as laser and ink-jet, as well as commercial
planographic and screen presses capable of only bina
output, rely on digital halftoning in order to produce the
illusion of continuous-tone. Typically, halftoning is done in

(FM) modulated halftoning. Both present their advantage
and disadvantages.
AM halftoning is a point operation that forms a regular

grid of clustered dots (Fig. 1 (top)). The resulting patter.n‘?:igure 1. Eyes image using (top) AM halftoning using 8x8 cells,

are, therefore, very _robus_t and computationally inexpenswtemiddle) FM halftoning using blue-noise, and (bottom) AM-FM
but also of low quality. Visually, AM halftones are blurred halftoning using a green-noise mask '

versions of the continuous tone original.

FM halftoning, by isolating minority pixels in a random
fashion, produces binary images with much higher spatial Until now, halftoning with green-noise has implied
resolution (Fig. 1 (middle)), creating an image with mucherror-diffusion based halftoning. Such schemes are
less blurring than their AM counterparts. Once aneighborhood operations and, therefore, carry a high
neighborhood operation, FM halftoning can be performedomputational costBut in this paper, we introduce a novel
with minimal computational expense through the use ofechnique for constructing green-noise masks. These masks
blue-noise dither arraysThe problem with FM, though, is make it possible to generate green-noise halftones with the
that by isolating minority pixels, FM halftones maximize same low complexity as AM and FMBeing a tunable
the perimeter-to-area ratio of printed dots, therebyrocess, the construction algorithm can produce masks for a
maximizing the susceptibility to inevitable processwide range of printing devices such that reliable devices
variation. have small clusters and unreliable devices have large.
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another. The second, labeled (b), is a pair correlation

approaching 1 for increasing indicating a decreasing
Before constructing masks, this section summarizes theorrelation between minority pixels asgets larger and

statistical framework, introduced by Lati al, for studying

larger. The final feature, labeled (c), is a series of peaks at

stochastic halftone patterns and, using spatial statisticB)teger multiples of,, the principle wavelength of blue-
characterizes the green-noise halftoning model. In the Lanoise. These peaks indicate a frequent occurrence of the
et al framework, an aperiodic halftoning process is definednter-point distanca,.

as a stochastic modeb, governing the location of minority
pixels, or points, within a binary dither array. A sample of
®, @ is written as@={x:i=1,...N} with ¢@B) a scalar
quantity defined as the number of minority pixeds, in a
subsetB of the dither array. Using this notatiog(x)=1
indicates that the pixel at samplés a minority pixel (pixel
xis 1 for 2g<0.5 and 0 for 05g<1) while @x)=0 indicates
that the pixel at samplbeis not.

As a scalar quantity, the first order moment or the
expected value of)(x) is theintensity 1(x), which is the
unconditional probability that sampleis a minority pixel.
For a binary pattern representing gray legell(x)=g for
0<g<0.5 and 1g for 0.=g<l. A second statistic for
characterizingb is the quantityK(x;y) defined as:

E{e(¥)|y D¢}
E{o(x)}

PAIR CORRELATION

PAIR CORRELATION

K(xy)= @)

[any
T

(@)

(©

A
<>b

(b)

RADIAL DISTANCE

@

0

(©

A
09

(b)

RADIAL DISTANCE

Figure 2. The ideal pair correlation for (top) blue-noise and

the ratio of the conditional expectation that sampls a
minority pixel given that samplgis a minority pixel to the
unconditional expectation that sampleis a minority pixel.
Referred to as theeduced second moment measutéx;y)

(bottom) green-noise.

In contrast to blue-noise, green-noise has a pair
correlation of the form of Fig. 2 (bottom). This pair

is a measure of the influence that a minority pixel at sampleorrelation also displays three distinct features. The first,

y has on pixek. If K(x;y)>1 then sampl& is more likely to
be a minority pixel givery while if K(x;y)<1 then sampl&
is less likely to be a minority pixel given

For a stationary point proceds K(x;y)=K(r,6) wherer
is the distance between samplesand y and 6 is the
direction fromy to x. For stationary point processes which

2
mr, =M.

labeled (a), is a pair correlatid(r)>1 for r<r_indicating a
clustering of minority pixels wherg, is thecluster radius
This cluster radius is related to the average number of
minority pixels per clusteM, as:

©)

are also isotropic K(r,6) is independent of6 and is

commonly referred to as thpair correlation R(r), which is

defined explicitly as:

= O )y09

E{o(Q,(r)}

Egn. (3) states that the area enclosed by a circle of
radiusr, is equivalent to the area covered by a cluster of size
M pixels. The second feature of the ideal green-noise pair
correlation, labeled (b), is a pair correlation which
approaches 1 with increasingindicating, like the blue-
noise pair correlation, a decreasing correlation of minority
pixels with larger and larger separation between them. The

the ratio of the expected number of minority pixels locatedinal feature, labeled (c), is a series of peaks\ gtthe
in the ringQ (r)={x:r<|x-yl<r+dr}, under the condition that principle wavelength of green-noise, indicating a frequent
a minority pixel exists at samplg to the unconditional

occurrence of the inter-cluster distarge

expected number of minority pixels located in the ring
Q. (r).
" For studying inter-point relationships between the

BIPPCCA

pixels of a binary dither pattern, the pair correlation is dn this paper, we introduce the iterative procedure
very powerful metric. This can be seen by looking at thé8IPPCCA
well studied blue-noise model where given that the goal oflgorithm) to construct binary dither patterns with arbitrary
blue-noise halftoning is to space minority pixels aspair correlations and a given intensity by randomly
homogeneously as possiBlthe pair correlation of the ideal converting pixels of an arbitrarily sized array from a
blue-noise dither pattern is of the form of Fig. 2 (top). Thismajority (0) to a minority (1) value. Progressively building
pair correlation shows three distinct features. The firstipon the previous iteration, BIPPCCA begins withMiN

feature, labeled (a), is a pair correlatiBr)=0 nearr=0

(BInary-Pattern-Pair-Correlation-Construction-

all zero array,, with one pixel selected at random and

indicating a strong inhibition of minority pixels close to one converted to a minority pixel. Given the dither pattern
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with minority pixels §:i=1,2,...}, BIPCCA assigns a
probability of becoming a minority pixel to each majority
pixel in @. BIPPCCA then replaces the maximum likely
majority pixel (the majority pixel with the highest
corresponding probability) with a minority pixel. The
process is then repeated until the dither patteof size C
MxN hasIxMxN minority pixels wherd=g for 0<g<0.5 or
1-g for 0.5¢g<1.

BIPPCCA is able to construgtsuch that the resulting 0
dither pattern has a desired reduced second moment

measure by adjusting the probabilities of majority pixels min{H . 0 ¢} ma>{HLp5¢}

being converted to minority pixels at each iteration {H 0 }

according to the current set of minority pixelspiandR(r), e = @

the pair correlatioshaping functionR(r) is a user specified Figure 4. Mapping function used to construct the concentration

function derived from the desired pair correlation with
values ofR(r)>1 increasing the likelihood of minority pixels
being placed a distance apart and values oR(r)<1 In BIPPCCA, the concentration of minority pixels is
decreasing the likelihood. Recall from the previous sectiomeasured as the output after applying the low-pass filter,
that R(r)>1 indicates that given a minority pixel at location H,,, to . In selecting a low-pass filter, an obvious choice
y all samplesx, for which k-y|=r, are more likely to be a for H,,, as suggested Ulichnéys the Gaussian filter such
minority pixel than any poinz for which R(|z-y)<R(r). So that:

given that a minority pixel is placed at BIPPCCA
increases the likelihood of a pixel becoming 1 for all pixel
x for whichR(r)>1. It also decreases this likelihood for all
for whichR(|z-y])<1.

matrix C.

H_(N=exp(’12d°), (4)

Sfor some constard. Note that in order for a minority pixel
to have an influence on neighboring clusters, the fiter
should have a higher for smalll where clusters are farther
apart than for largé where clusters are closer together. In
this paper, such a relationship betwéenandl is ensured
by setting 2” =\, The concentration matrix is then
constructed from cony{H,, @}, the output after filteringp
with the low-pass fiIterHLP using circular convolution
according to the mapping of Fig.4.

The steps of BIPPCCA for generating BixN binary
dither pattern representing intensity levelre described as
follows:

Initialize all pixels of arMxN array,@, to zero.
Randomly select one pixel ¢f and convert that pixel,
@m,n], to one.

ON

SHAPING FUNCTI
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Figure 3. The pair correlation shaping function used to constructl'
green-noise dither patterns. :

The functionR(r) is referred to as the spatisthaping 3.

function due to its influence in *“shaping” the pair
correlation of the resulting pattern. Used in this paper for
R(r), Fig. 3 shows a very simple approximation of the ideaf™
pair correlation for isotropic green-noise with peaks at
integer multiples o\, the principle wavelength of green-
noise, and valleys mid-way between peaks. We note that
although more elaboraf(r) could be proposed, this model

was selected because of its very simple structure. IR-

simulations, 1.01 proved a good value as the maximum
amplitude (labele® in Fig. 3) forR(r).
In addition toR(r), the probabilities of majority pixels

being converted is also influenced, at each iteration, by the

current concentration of minority pixels gnthroughC, the
concentration array C ensures homogeneity ip by
decreasing the probabilities of becoming a minority pixel
for majority pixels in areas of dense minority pixel
concentration and increasing the probabilities for majority
pixels in areas of sparse minority pixel concentration.
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Create anMxN array, U, of uniformly distributed
random numbers such thatJi,j]00(0,1] is the
probability thatg[i,j] will become a minority pixel.
Given the most recently converted pixglm,n], scale
the valueUJi,j] for all pierS(p[i,j] 0 by R(r) such that
(ULLD o= (UIi,i]) ,R(r) wherer is the minimum wrap-
around distance between the two pixeglsn,n] and
i j]-

Construct the concentration matri using the
mapping of Fig.4 from cony{H,. .¢}, the output after
filtering ¢ with the low-pass filterH , using circular
convolution.

Locate the majority pixel in@ with the highest
probability (the pixel @mn]=0 such that Y[mn]O
C[m,n])>(U[i,j][C[i,j) for all 1<i<M and kjs<N and
thatqi,j]=0), and set that pixed{m,n], to one.

If the number of minority pixels ipis equal tdxMxN,

then the algorithm quits with the output pattern given

by ¢; otherwise, continue at step 4.
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Constructing Green-Noise Masks possible’, green-noise halftoning forms clusters of minority
pixels that are distributed as homogeneously as possible.
The basic premise to constructing green-noise masks is fypically, green-noise patterns are generated via error-
generate a set@{:0<g<1}, of dither patterns, constructed in diffusion based techniquésIn this paper, we have
any order using BIPPCCA, from a seR(f;g):0<g<1}, of  described the algorithm BIPPCCA that constructs binary
shaping functions with one pattern and one shaping functiopatterns according to a desired pair correlation. Although
for each possible discrete gray-leee(256 levels for 8-bit intended here for green-noise, BIPPCCA can be used to
gray-scale images). The dither arr®4, is then construc- construct blue-noise patterns as well.
ted by assigning to each pixel a threshold according to the Under a stacking constraint, can use BIPPCCA to build
spatial arrangement of binary pixels withinp:P<g<1}. green-noise masks, dither arrays designed to produce green-
Note that because BIPPCCA generates patterns such thagise halftones by thresholding, pixel-by-pixel, a continu-
minority pixels are represented by pixels equal to one, theus tone original. Far less computationally complex than
dither patternp, for 0.5g<1, are generated by inverting the error-diffusion based algorithms, these green-noise masks
pixels of a dither pattern created by BIPPCCA for gray-can also be tuned to specific printer characteristics by
level 1g. adjusting pattern coarseness. Fig. 5 shows four instances of
In order to avoid ambiguities in the assignment ofthe green-noise mask, each with increasing coarseness over
thresholds toDA, the dither patternsp, are constructed the previous.
under thestacking constrainthat@ g, for all k<g or that if
given ¢[mn]=1, then@[mn]=1 for all g<k. As a conse-
guence, the threshold assigned to each pb&m,n] is
equal to the minimung for which @[m,n]=1. In BIPPCCA,
a dither patternp, can be constructed givep such that -
@@, by constraining step 6 of BIPPCCA to only considert
those pixels ofp, for which@[m,n]=1; furthermore, a dither
patterng, can be constructed givem such thatpJg, if, in 1.
step 1,q, is initialized to@ and each valueJ[mn], is
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Figure 5. Green-noise masks constructed to produce halftonin
patterns with increasing coarseness.

Conclusions
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