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Abstract dipolar energetic density of states (DOS), anid a min-
Prerequisite to the rational development of organic elecimal charge-dipole separation. In a previous work [4], an
tronic materials with prescribed electronic and optoelecanalytical result
tronic properties is an understanding of the fundamental
charge transport mechanisms upon which they rely. The It = 1o €Xp [—52 + 20/ €aE/kT] 3)
field dependent mobility of disordered molecular solids . . ) i
has recently been shown to depend critically on the deformally equivalent to Eq. 1 was derived for carriers dif-
gree and morphological character of energetic disorder ifUSing @long one spatial dimension through a medium with
the system. In particular, it is now recognized that a key3P correlations as in Eq. 2. In this expressions o /kT
ingredient necessary for understanding the field dependefit (e energetic width of the DOS relative to the thermal
mobility observed in such systems are spatial correlation§"€rgy- This same behavior also occurs in 3D simulations
that relate the strength of random potential energy fluctul®]: Moreover, recent studies suggest that this mechanism
ations in the medium to their spatial extent. We review " producmg PF behavior is stable gnder Ies; correlated
here microphysical mechanisms that can give rise to sucRPUrces of disorder than those that arise from dipoles [6,7].

fluctuations and study the field dependences that can U% numerical characterization of the results from extensive
expected from them. 3D numerical simulations on correlated disorder models

(CDM's) that take into account the spatial correlations as-
sociated with dipolar media have led to the following re-

Introduction cently proposed empirical relation
Recent efforts by a number of workers [1-8] have increased 36\ 2 3/ eaE
our understanding of nearly universal features of photoin- # = Ho €Xp | — (E) +Co (U B F) o )

jected charge transport in many molecularly doped poly-

mers [9,10], low weight molecular glasses [11,12], anddescribing nondispersive transportin correlated media, with
certain polyconjugated polymers [13,14]. It is now gen-simulation-determined parametefs = 0.78, andT’ =
erally appreciated that the Poole-Frenkel (PF) field depent 97, As pointed out in [1], the parametgy; in Eq. 4 may
dence [9-13] have additional temperature dependence due to other less
I X exp (7\/5) (1) correlated sources of energetic disorder or polaron effects.
, . o ) The empirical relation in Eq. 4 was established in Ref.
of the drift mobility x on electric fieldE' that occurs in 1 on the basis of simulations performed on regular ordered

these materlal_s results from the correlatgd nature of th?attices possessing energetic disorder of the type that arises
random potential energy landscape experienced by a ph(?ﬁ dipolar media. Experience with the much-utilized Gaus-

toinjected carrier migrating through the disordered mediungian Disorder Model (GDM) of Bssler, Borsenberger, and

In polar materials, e.g., energetic fluctuations arise [2] fro”l:oworkers [11], which differs from the CDM of recent

the random distribution of dopant or host molecules posyy 4y in that it does not include these energetic correla-

sgshaﬁg Ipermr;\]nenbt elect:]lc dipoles. Adcarrlgrs.:cnteractloqions, leads to the general theoretical expectation that the
with the latter has been shown to provide a significant Con'parametelf may in fact characterize the degree of geo-

tribution to the carriers potential energ&(r): More 'M""metrical disorder and thus should depend upon transport
portantly, the potential energy autocorrelation function [2'site concentration and morphological factors such as the
4] 5 size and shape of dopant and host molecules. As of yet,
C(r) =(UO)U(r)) ~ o7a/r @) however, the specific dependence of the geometrical disor-
in such a medium decays very slowly with intersite sep-der parametel on the mobility has not been extensively
arationr. Here,o = (U?)'/? is the RMS width of the studied. In this paper we wish to present a preliminary,
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having an approximate width

100 T T T T T T T E ep
3 i o=+/(ud) =235— (6)
—__—.————‘————.———__.____'_ ga%
o/kT =1 _
| kT2 _e--® " -7 ‘—/ - //’_ The hopping rate between two sites on the lattice we take
B S e~ ® % to have the following “Miller-Abrahams” form
@10'1 = ./’./ ‘/ .//.—
= E _- L - / e 13
:: olkT =3 B /. /. //. ] Wn m — VO eXp _ anan _ Anm + |Anm| , (7)
= . o . 1 ’ a 2kT
8 >~ ° 7 /‘ i
g i - /‘/ | whereA,,, = u, — um — eErcos@ is the energy differ-
3 IR i ence between the two sites, altered in the presence of an
£ 107 | 9K=4g ,® E electric field,R,.., is the intersite separation, afigi,,, =
4 / 5= ] p
. .® /. CE)S/I 1 I, + I, which represents the geometrical disorder, is
[ o 6= 0.08eV ] taken to be the sum of dimensionless independent random
’/ a=10A | variables assigned to each site from a Gaussian distribution
akT = 5/ Asymmetric Rates of width ¥. The question we are interested in studying is
10 e how the field dependence of the mobility depends upon the
0.2 0.4 0.6 0.8 1.0 strengthY of the geometrical disorder, in the presence of
EY2 [10% (viem)') the type of correlations that have been shown to give rise

to the Poole-Frenkel behavior.
To compute the mobility, we have performed numeri-
Figure 1 Field dependent mobility for correlated disorder model cal calculations to solve the steady-state equations of mo-
with no spatial disorder. tion J
P
d—tn =0= Z (Wn,mpm - m,nl)n) (8)

m

but systematic study of the effects of geometrical disordefor a periodically-repeated cubic sample contain¥ig=

on transport in energetically correlated random media. Tg0? sites using a simple relaxation method. From the steady-
this end we provide in the next section a description of ourstate occupation probabilitigs, the drift mobility

basic model and computational approach, along with the

major results of the investigation. The last section contains = 1 Z Wi Ron.np 9)

a discussion. E ’ ’

n,m

Model and Computational Approach is then straightforward to compute.

We consider a simple extension of the CDM of Ref. 1 Results and Discussion

which is intended to include effects of geometrical disor-

der in a way parallel to that implemented in the GDM of In the calculations presented in Figs. 1-5 we have adjusted
Bassler and coworkers [11]. Specifically, we consider ahe parameters of the dipole field to generate a DOS with a
model in which transport occurs among the sites of a simwidth o = 80 meV, with different curves (data sets) in each
ple cubic lattice. On each site of this lattice we place afigure corresponding to differenttemperatures as described
randomly oriented electric dipole of fixed magnityde- by the dimensionless parametet= ¢/kT'. In Fig. 1 the
|Pm|- The energy of a carrier when at lattice sitethen  field dependent mobility is presented for an ordered sys-
develops due its interaction with the dipoles on all suchtem having no spatial disorder; filled circles indicate nu-

sites except the one on which it resides, i.e., merical calculations as described earlier and dashed lines
oL represent linear fits to each data set. The curves in this
_ _ epn - (T — Tm) 5 figure display the robust Poole-Frenkel mobility observed
Um = Z S S 30 (5) . . .
i dme |Fy — T | earlier for the correlated disorder model characterized by

Eq. 4 with a valuel' ~ 1.97 (which corresponds to a

wheree is the electronic charge ardhe dielectric permit- - 5nishing Poole-Frenkel slope at a temperature for which
tivity of the medium. This assignment generates a Gaussian;,.r ~, 12/3 ~ 1.6). In Figs. 2-5, similar data is pre-

like DOS with the right kind of spatial correlation, and ggnteq for systems with spatial disorder parameters taking
the valuest = 1,2, 3, and4.
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Figure 2 Field dependent mobility for correlated disorder model Figure 4 Field dependent mobility for correlated disorder model

with spatial disorder parametex = 1.
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with spatial disorder parametet = 3.
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Figure 3 Field dependent mobility for correlated disorder model Figure 5 Field dependent mobility for correlated disorder model

with spatial disorder parameter = 2.
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that much of the intuition regarding the effects of energetic
5 T . . T T disorder developed from extensive studies of the Gaussian

s-0 - Disorder Model may be qualitatively applied to character-
&4 b //,’f éi; | ize the predictions of the Correlated Disorder Model of
S //// | recent study. A more complete quantitative characteriza-
E s L ,/2// P tion of the effects of geometric disorder on the mobility of
® 227 T the CDM, including the effects of different types of hop-
=) ,/7 ‘/ v i ping rates (e.g., Marcus or "small polaron” type rates), and
n 2 //9’ pad PR other more realistic models of geometrical disorder will be
;i /ﬁﬁ’y/ // ] presented in a future publication. This work is supported
2 £ .7 - by the National Science Foundation. The author is grateful
% /ﬁ’// // § for stimulating discussions and ongoing collaboration with
5 o 5?’/,‘ //' i D.H. Dunlap, V.M. Kenkre, and S.V. Novikov.
% f N ] -
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v’ Asymmetric rates J
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in 1984. He is an expert in the field of hopping transport
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cent years on the problem of photoinjected charge trans-
port in disordered organic materials, with applications to
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Figure 6 Poole-Frenkel slop& for correlated disorder model as
a function of the energetic width/kT'.
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The results of these preliminary calculations indicate
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