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Abstract In much of the work of Schein and coworkers, by contrast,

It has been recently shown that the Poole-Frenkel fielcignificant effort has gone into explaining the concentra-
dependence of the mobility of injected charges in molelion dependence of observed activation energies in terms

cuarly doped polymers arises as a natural consequence 8f the polaron binding energl of the carriers, the elec-

the spatially correlated energetic disorder associated witffOn transfer integral, and a crossover that has been sug-

compatible with this mechanism for disorder, provided thatPolarons [2]. Others have attempted to combine these two
the polaron binding energy is in a range which is neitheViewpoints by considering hopping with small polaron-like

too large nor too small; If the binding energy is large, thefates among energetically disparate sites [3, 4].

account for the magnitude of the mobility must also pehampered the internal consistency of many of the polaron

large, and may be unacceptable for an organic solid. If théodels. For example, in the absence of disorder, to pre-
binding energy is too small, on the other hand, the smalflict mobilities of the right order of magnitudenf: ~
polaron rates tend to become “inverted” by the energetid 0~°—10~°c?/Vs) using a polaron binding energybig
disorder. In this regime there is an increase in the Poole€Nough to give typical activation energies, = A/2 ~

Frenkel slope with decreasing temperature which may b&-5 €V), it is necessary to assume transfer integiaten-
described by Gill's compensation temperature. siderably larger than the bandwidth of an organic crystal
[2, 3]. On the other hand, if the polaron binding energy

| q . is actually rather small, ostensibly allowing for a reason-
ntroauction able value ofJ, there would then need to be substantial

energetic disorder to get an effective activation energy of

From the first time-of-flight mobility measurements on moI-the order of0.5 eV. If the width o of the energetic dis-

ecularly-doped polymers (MDP’s) there has been Cons'der()rder needed to make up the difference represents actual

able debate regarding the nature of the charge carriers th@hergyjumps encountered in typical hops (as it does in the

are photoinjected into these systems. In particular, therE%DM and other models with uncorrelated energetic disor-
has often been disagreement as to whether the strongly age

X ) r), then an additional problem arises; the small polaron
tivated field and temperature dependence of the observeﬁg ) b P

bility is related ¢ i iated with th pping rate tends to become “inverted”. Inversion, in this
MOBILY 1S related more 1o properties associated wi Ccontext, refers to the strong suppression of the jump prob-

carrier and its interaction with phonons (e.g., the magn"ability that occurs with small polaron type rates [5]

tude of the polaron binding energy, the degree and type

of polaron formation), to static properties of the material _J? T —AJ2KT Q 02
(e.g., the amount and characteristics of energetic and spa-~" ~ 7 \/ 2AkT € eXp |~ 2kT  8ALKT
tial disorder), or to some combination of both. In the dis- (1)

order formalism of Bisler, Borsenberger, and coworkers,for hops between sites with large intersite energy differ-
it has been assumed that observed activation energies arisace(), and arises as a result of the exponential factor
from activated hopping of carriers in an energetically dis-exp (—QZ/SA) occurring in those rates which expresses
ordered medium possessing a Gaussian density of locathe diminishing probability of having a “coincident event”
ized transport states characterized by an energetic widtlvhen || is significantly greater than the polaron bind-
o =~ 0.1 eV. Within the context of this Gaussian disor- ing energy.[5] Such a reduction of the hopping rate for
der model (GDM) numerous simulations have been carrieénergetically disparate jumps makes it again difficult to
out using a specific functional form of the hopping rate in obtain mobilities of the right order of magnitude without
which polaron formation and multiphonon processes ardaking an unreasonably large value 6f In numerical
assumed to be minimal (i.e., Miller-Abrahams rates [1]).work on the GDM such difficulties do not arise; the hop-
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ping rate is assumed to be of the Miller-Abrahams, singleand corresponding electron transfer integrals in the range
phonon-assisted type, having asymmetric detailed balancé = 0.01 — 0.1 eV.

[6]. Indeed, numerical simulations of the Gaussian disor-

der model using symmetric rates are not consistent wit

formulae that have been extensively employed in the dis%pproach

order formalism [4]. For this combinati'on of reasons, it o tormal extension of the theory presented in Refs. [9]
has been assumed by some that photoinjected charge caf;g 119] makes it applicable to a rather general form of the
riers in molecularly-doped polymers are not polarons, but,gpping rate, including, as a special case, hopping rates of
are implicitly associated with bare, disorder-localized elecathe type (1) that arise in the theory of molecular polarons.

tronic states. _ , As in our earlier paper, the starting point of the analysis is
In recent years, however, it has been recognized thal,, axact expression for the drift velocity [9, 20]
disorder models with appropriate spatial correlations char-

acterizing the random potential energy landscape[7] can v = P 2)
explain most of the features associated with transport in Yooy e Bn=DeBp (Blun—u)R 1 )

these materials [8, 9, 10]. In particular, recent theoretica
work has successfully explained the Poole-Frenkel fiel

dependence, « exp yVE, of photoinjected charge car- . . . . ) .
rier drift mobilities commonly observed in these materi_a?)-dlmensmnal energetically disordered medium. In this

S :
als on the basis of spatial correlations naturally occurrinqexpressmrﬁ = kT is the mean thermal energyfp

as a result of the long-range charge-dipole interaction be> t_he poFentin energy drop induced by the figld between
eighboring sitesy,, is the site energy of theth site along

tween charge carriers and permanent electric dipolesintht th andR i< the hopoi " tina th
material [9, 10]. Moreover, this picture offers a natural € pafh, andi,, 41 1S the hopping rate connecting the

explanation for the relationship that empirically exists be-I! Sit€ 0 its neighbor. The ensemble average in (2) was cal-

tween observed activation energies and dipole moments Ia(;ed n Rfet];'] [?‘] by assuming a 5|mtﬁle exponedr}ft_;al de-
the molecular constituents in a wide class of molecularlypen ence of the hopping rai, ,,+1 on the energy differ-

doped polymers, and organic molecular glasses. [11, 12NCEM = tnt1 —un —eLp. In the present circumstance
13, 14, 15, 16, 17] we take advantage of the fact that the hopping rate between

In this paper we point out that correlated disorder mod-two sites typically arises from a microscopic calculation as

els (CDM's) of this type also offer the possibility of recon- the Fourier transform ofa memory funct|qn [21]..Thu.s, i
ciling difficulties that have traditionally hindered polaron- the electron-phonon mterac_tlon is translationally invariant,
based explanations of transport in these systems. Suchtae rate may be expressed in the general form
reconciliation is possible because, as pointed out previ- co

ously, in correlated disorder models large potential energy, .y = e /2 (Q,,) = e~ /2 / dt e“?UW (t)
fluctuations typically occur only over very large length scales.

As aresult, energy differences associated with nearest neigh- - (3)

bor hops are typically much smaller than would be ex-where the memory functiofi (¢) and its Fourier trans-
pected based upon the full width of the energetic disordeform 177 () contain all model specific information about
Indeed, the activation energies that emerge in such modefe electron phonon coupling. Following Ref. [22], we

are the net result of many hops over spatially extended enake advantage of this structure and formally introduce a
ergetic hills and valleys [18]. Using an analytical extensionsnction

of the approach developed in Refs. [9] and [19] (the details ~
of which will be presented more fully in a subsequent pa- F(Q) = ; = / dr f(r)e™ (4)
per), we show that the field and temperature dependence W(Q) —0

of the mobility in molecularly doped polymers is gener-
ally consistent with small polaron motion in a random en-
ergy landscape having correlations of the appropriate type. peBeEp/2

Through numerical studies based upon our theoretical ex- ¥V = S o B(n-1)eBp f°° dr f(r)e 7EC )
pressions we are able to establish upper and lower bounds n=1 - "

on the magnitude of polaron binding energies consisteniyhere

with typical experimental data. Within the context of a 1D

analysis of the underlying transport, we find that accept-

able Poole-Frenkel-type behavior can be achieved with po- ) ) )
laron binding energies in the range = 0.1 — 0.5 eV,  For concentration, temperature, and field ranges of inter-

est, the site energy distributions of the dipolar disorder

or a particle moving along a one-dimensional transport
path of sites separated by mean intersite spaeihgough

in terms of which the drift velocity can be written

C, = <e—(i‘r—6/2)une(ir+6/2)un+1e—ﬁu1/2> ] (6)
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model[7] are well approximated by a Gaussian[23], and

the ensemble average of the product of exponentials in the T
denominator is straightforward to compute using the tech-

nigues of Refs. [9] and [19]. The essential result is that

2 _2 2o 2 _,2(p=a) 2
aneﬁaanezﬁa b"Te o T

(7)

whereo? = (u?) is the variance of the energetic distribu-

tion associated with the dipolar disorder, and the quantities

an, b,, ande,, are defined through the relations

_ 1dailp—a)
ap = ZT (8)
1 3p+1 2a
=i (Y2 - at) ©
b, = 5n71(p—a)+(1—5n71)a (10)
p np

in which a, representing a minimal molecular radius, is

typically about one-half the mean intersite spacing, a rela-

tionship that we assume in what follows.

For the small polaron rate (1), we have, through Egs.

(3 and (4), the specific result that

AET

f(r) = RSy (11)

exp (—72/477)

wheren = —8AkT'. Becausey is negative in this instance,

we perform the integral resulting from the substitution of

(11) and (7) into the denominator of (5) by formally treat-
ing n as a complex variable and analytically continuing
the result to the value of appropriate for the small po-

laron rate. After dividing by the field, the final result of the
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Figure 1 Field dependent mobility for the model described in the
text, parametric in temperature, as indicated.

parameters, demonstrating that hopping rates of the small
polaron type are indeed consistent with a strongly acti-
vated Poole-Frenkel mobility of the right magnitude over
the range of temperaturds = 230 — 330 K and fields

calculation is the following exact expression for the smallg = 2.5 x 103 — 1.5 x 10° V/cm typically probed in

polaron mobility

™

8

J%p
M= %EA

(44 — fo?) (12)

oBeFp/2 ,—BA/2
X

I

experiment. The filled data points in these figures were
produced using (12) with polaron parametdrs= 10

meV andA = 0.15eV that are reasonable for molecu-
lar solids. In addition we have assumed a mean intersite
spacingp = 10 A, a molecular radiuss = 5 A, and
have included correlated energetic disorder characterized
by a width parametess = 80 meV. For the data points
shown, numerical convergence of the sum in the denomi-

Equation (12) allows, through a numerical evaluationnator of (12) occurs within about? terms of the series.
of the sum in the denominator, calculation of the mobility The straight lines accompanying the numerical data are the
for small polaron hopping rates as an explicit function of regults of linear least-square fits performed in the restricted

the transfer integral, the polaron binding energs, the
width o of the energetic disorder, and the temperailire

1/k8.

Results and Discussion

rangev'E = 300 — 900 (V/cm)'/2,

In addition to the data presented in Fig. 1, we have per-
formed a more extensive investigation of the mobility over
a wide range of polaron and disorder parameters. For the
same values of, a, andp, and polaron binding energies
in the rangeA = 0.1 — 0.5 eV, the agreement with the

In Fig. 1 we present calculations of the field dependenfoole-Frenkel law remains undiminished. Eorsmaller

mobility using Eq. (12) for a specific set of microscopic
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than0.1 eV, we begin to see significant deviations from
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