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Small Polaron Hopping in the Inverted
Regime and the Compensation Temperature
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Abstract
It has been recently shown that the Poole-Frenkel fi
dependence of the mobility of injected charges in mo
cuarly doped polymers arises as a natural consequenc
the spatially correlated energetic disorder associated w
the charge-dipole interaction. Small polaron hopping
compatible with this mechanism for disorder, provided th
the polaron binding energy is in a range which is neith
too large nor too small; If the binding energy is large, th
size of the hopping matrix element which is required
account for the magnitude of the mobility must also b
large, and may be unacceptable for an organic solid. If
binding energy is too small, on the other hand, the sm
polaron rates tend to become “inverted” by the energe
disorder. In this regime there is an increase in the Poo
Frenkel slope with decreasing temperature which may
described by Gill’s compensation temperature.

Introduction

From the first time-of-flight mobility measurements on m
ecularly-doped polymers (MDP’s) there has been consid
able debate regarding the nature of the charge carriers
are photoinjected into these systems. In particular, th
has often been disagreement as to whether the strongly
tivated field and temperature dependence of the obser
mobility is related more to properties associated with t
carrier and its interaction with phonons (e.g., the mag
tude of the polaron binding energy, the degree and ty
of polaron formation), to static properties of the mater
(e.g., the amount and characteristics of energetic and s
tial disorder), or to some combination of both. In the di
order formalism of B¨assler, Borsenberger, and coworker
it has been assumed that observed activation energies
from activated hopping of carriers in an energetically d
ordered medium possessing a Gaussian density of lo
ized transport states characterized by an energetic w
� � 0:1 eV. Within the context of this Gaussian diso
der model (GDM) numerous simulations have been carr
out using a specific functional form of the hopping rate
which polaron formation and multiphonon processes a
assumed to be minimal (i.e., Miller-Abrahams rates [1
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In much of the work of Schein and coworkers, by contra
significant effort has gone into explaining the concen
tion dependence of observed activation energies in te
of the polaron binding energy� of the carriers, the elec
tron transfer integralJ; and a crossover that has been su
gested to occur between adiabatic and nonadiabatic s
polarons [2]. Others have attempted to combine these
viewpoints by considering hopping with small polaron-li
rates among energetically disparate sites [3, 4].

Until recently, however, quantitative difficulties hav
hampered the internal consistency of many of the pola
models. For example, in the absence of disorder, to
dict mobilities of the right order of magnitude (mu �
10�6�10�3cm2/Vs) using a polaron binding energy� big
enough to give typical activation energies(Ea = �=2 �
0:5 eV), it is necessary to assume transfer integralsJ con-
siderably larger than the bandwidth of an organic cry
[2, 3]. On the other hand, if the polaron binding ener
is actually rather small, ostensibly allowing for a reaso
able value ofJ , there would then need to be substan
energetic disorder to get an effective activation energy
the order of0:5 eV. If the width � of the energetic dis-
order needed to make up the difference represents a
energy jumps encountered in typical hops (as it does in
GDM and other models with uncorrelated energetic dis
der), then an additional problem arises; the small pola
hopping rate tends to become “inverted”. Inversion, in t
context, refers to the strong suppression of the jump pr
ability that occurs with small polaron type rates [5]

R =
J2

�h

r
�

2�kT
e��=2kT exp

�
� 


2kT
� 
2

8�kT

�
(1)

for hops between sites with large intersite energy diff
ence
; and arises as a result of the exponential fac
exp

��
2=8�
�

occurring in those rates which express
the diminishing probability of having a “coincident even
when j
j is significantly greater than the polaron bin
ing energy.[5] Such a reduction of the hopping rate
energetically disparate jumps makes it again difficult
obtain mobilities of the right order of magnitude witho
taking an unreasonably large value ofJ . In numerical
work on the GDM such difficulties do not arise; the ho
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ping rate is assumed to be of the Miller-Abrahams, sing
phonon-assisted type, having asymmetric detailed bala
[6]. Indeed, numerical simulations of the Gaussian dis
der model using symmetric rates are not consistent w
formulae that have been extensively employed in the d
order formalism [4]. For this combination of reasons,
has been assumed by some that photoinjected charge
riers in molecularly-doped polymers are not polarons, b
are implicitly associated with bare, disorder-localized ele
tronic states.

In recent years, however, it has been recognized t
disorder models with appropriate spatial correlations ch
acterizing the random potential energy landscape[7] c
explain most of the features associated with transpor
these materials [8, 9, 10]. In particular, recent theoreti
work has successfully explained the Poole-Frenkel fie
dependence,� / exp 


p
E; of photoinjected charge car

rier drift mobilities commonly observed in these mater
als on the basis of spatial correlations naturally occurr
as a result of the long-range charge-dipole interaction
tween charge carriers and permanent electric dipoles in
material [9, 10]. Moreover, this picture offers a natur
explanation for the relationship that empirically exists b
tween observed activation energies and dipole moment
the molecular constituents in a wide class of molecula
doped polymers, and organic molecular glasses. [11,
13, 14, 15, 16, 17]

In this paper we point out that correlated disorder mo
els (CDM’s) of this type also offer the possibility of recon
ciling difficulties that have traditionally hindered polaron
based explanations of transport in these systems. Su
reconciliation is possible because, as pointed out pre
ously, in correlated disorder models large potential ene
fluctuations typically occur only over very large length sc
As a result, energy differences associated with nearest n
bor hops are typically much smaller than would be e
pected based upon the full width of the energetic disord
Indeed, the activation energies that emerge in such mo
are the net result of many hops over spatially extended
ergetic hills and valleys [18]. Using an analytical extensi
of the approach developed in Refs. [9] and [19] (the deta
of which will be presented more fully in a subsequent p
per), we show that the field and temperature depende
of the mobility in molecularly doped polymers is gene
ally consistent with small polaron motion in a random e
ergy landscape having correlations of the appropriate ty
Through numerical studies based upon our theoretical
pressions we are able to establish upper and lower bou
on the magnitude of polaron binding energies consist
with typical experimental data. Within the context of a 1
analysis of the underlying transport, we find that acce
able Poole-Frenkel-type behavior can be achieved with
laron binding energies in the range� = 0:1 � 0:5 eV,
647
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and corresponding electron transfer integrals in the ra
J = 0:01� 0:1 eV.

Approach

A formal extension of the theory presented in Refs. [
and [19] makes it applicable to a rather general form of t
hopping rate, including, as a special case, hopping rate
the type (1) that arise in the theory of molecular polaro
As in our earlier paper, the starting point of the analysis
an exact expression for the drift velocity [9, 20]

v =
�P

1

n=1 e
��(n�1)eE�



�(un�u1)R�1n;n+1

� (2)

for a particle moving along a one-dimensional transp
path of sites separated by mean intersite spacing� through
a 3-dimensional energetically disordered medium. In th
expression��1 = kT is the mean thermal energy,eE�
is the potential energy drop induced by the field betwe
neighboring sites,un is the site energy of thenth site along
the path, andRn;n+1 is the hopping rate connecting then
th site to its neighbor. The ensemble average in (2) was
culated in Ref. [9] by assuming a simple exponential d
pendence of the hopping rateRn;n+1 on the energy differ-
ence
n = un+1�un� eE�: In the present circumstanc
we take advantage of the fact that the hopping rate betw
two sites typically arises from a microscopic calculation
the Fourier transform of a memory function [21]. Thus,
the electron-phonon interaction is translationally invaria
the rate may be expressed in the general form

Rn;n+1 = e��
n=2 ~W (
n) = e��
n=2
1Z

�1

dt ei
ntW (t)

(3)
where the memory functionW (t) and its Fourier trans-
form ~W (
) contain all model specific information abou
the electron phonon coupling. Following Ref. [22], w
take advantage of this structure and formally introduce
function

~f(
) =
1

~W (
)
=

Z
1

�1

d� f(�)ei�
 (4)

in terms of which the drift velocity can be written

v =
�e�eE�=2P

1

n=1 e
��(n�1)eE�

R
1

�1
d� f(�)e�i�eE�Cn

(5)

where

Cn =
D
e�(i���=2)une(i�+�=2)un+1e��u1=2

E
: (6)

For concentration, temperature, and field ranges of in
est, the site energy distributions of the dipolar disord
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model[7] are well approximated by a Gaussian[23], a
the ensemble average of the product of exponentials in
denominator is straightforward to compute using the tec
niques of Refs. [9] and [19]. The essential result is that

Cn = e�
2�2anei��

2bn�e��
2 (��a)

�
�2 (7)

where�2 =


u2n
�

is the variance of the energetic distribu
tion associated with the dipolar disorder, and the quantit
an; bn; andcn are defined through the relations

an =
1

4

�n;1(�� a)

�
(8)

+
1

4
(1� �n;1)

�
3�+ 1

�
� 2a

�n(n� 1)

�
(9)

bn =
�n;1(�� a)

�
+

(1� �n;1)a

n�
(10)

in which a; representing a minimal molecular radius,
typically about one-half the mean intersite spacing, a re
tionship that we assume in what follows.

For the small polaron rate (1), we have, through Eq
(3 and (4), the specific result that

f(�) =

s
�kT

2�2J4�
exp

���2=4�� (11)

where� = �8�kT: Because� is negative in this instance
we perform the integral resulting from the substitution
(11) and (7) into the denominator of (5) by formally trea
ing � as a complex variable and analytically continuin
the result to the value of� appropriate for the small po-
laron rate. After dividing by the field, the final result of th
calculation is the following exact expression for the sm
polaron mobility

� =
J2�

�hE�

r
�

8
� (4�� ��2) (12)

� e�eE�=2e���=2P
1

n=1 e
��eE�(n�1)e�2�2an exp

h
2 (�

2�2bn��E�)2

4����2�2

i :
Equation (12) allows, through a numerical evaluatio

of the sum in the denominator, calculation of the mobili
for small polaron hopping rates as an explicit function
the transfer integralJ; the polaron binding energy�; the
width� of the energetic disorder, and the temperatureT =
1=k�.

Results and Discussion

In Fig. 1 we present calculations of the field depende
mobility using Eq. (12) for a specific set of microscop
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Figure 1: Field dependent mobility for the model described in th
text, parametric in temperature, as indicated.

parameters, demonstrating that hopping rates of the sm
polaron type are indeed consistent with a strongly ac
vated Poole-Frenkel mobility of the right magnitude ove
the range of temperaturesT = 230 � 330 K and fields
E = 2:5 � 103 � 1:5 � 106 V/cm typically probed in
experiment. The filled data points in these figures we
produced using (12) with polaron parametersJ = 10
meV and� = 0:15eV that are reasonable for molecu
lar solids. In addition we have assumed a mean inters
spacing� = 10 Å, a molecular radiusa = 5 Å, and
have included correlated energetic disorder characteri
by a width parameter� = 80 meV. For the data points
shown, numerical convergence of the sum in the denom
nator of (12) occurs within about103 terms of the series.
The straight lines accompanying the numerical data are
results of linear least-square fits performed in the restric
range

p
E = 300� 900 (V/cm)1=2.

In addition to the data presented in Fig. 1, we have p
formed a more extensive investigation of the mobility ov
a wide range of polaron and disorder parameters. For
same values of�, a; and�; and polaron binding energies
in the range� = 0:1 � 0:5 eV, the agreement with the
Poole-Frenkel law remains undiminished. For� smaller
than0:1 eV, we begin to see significant deviations from
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Figure 2: Mobility for � = 0:08 eV, at temperatures just above
threshold. The initial decay with field is followed by an increas
spanning many orders of magnitude.

the Poole-Frenkel law which arise when a large enou
fraction of the hopping rates becomes extremely slow
the “inverted” regime. These deviations are naturally e
aggerated in our one dimensional calculation, where i
impossible to avoid a slow hop, to the extent that a stea
state mobility does not exist for4� � ��2. Such a tran-
sition to an anomalous transport regime is well-known
this context [20], and has been discussed previously[2
In Fig. 2 we show the mobility versus field for� = 0:08
eV, for temperaturesT = 257, 252, and246K which are
just above the transition threshold. At low fields the m
bility drops with increasing field. This is expected sinc
for downhill hops the field increases the degree of ene
mismatch between sites, and pushes some fraction of h
ping rates further into the inverted regime. The subs
quent increase in the mobility at higher fields shows an e
hanced Poole-Frenkel dependence, but in a narrower ra
of field. The sensitivity of the Poole-Frenkel factor to tem
perature is indicative of the effect of the compensation te
perature proposed by Gill[24]. A more complete analys
of this transition, along with a more comprehensive d
cussion of other aspects of the present model will app
in a subsequent publication.
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