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Abstract

In this paper a numerical simulation of the drop formation
in drop-on-demand ink-jet print head devices is described.
Different pressures histories are considered and a finite
difference technique is used to obtain the velocity profile at
the exit of the nozzle. For the computation of the unknown
free surface shape, we propose an efficient technique based
on the stream-tube method, which has been used elsewhere
essentially for simulating extrusion problems for which the
effect of surface tension is negligible.

The distinguishing features of the proposed method in
contrast to other codes are the easiness in introducing
elaborate rheological constitutive equations in the model and
the limited amount of computer resources, which is
necessary. The results obtained simulate drop formation
from a nozzle for different specified driving pressures and
cover both the inviscid and the viscous cases.

They reveal the essential features namely the transient
evolution of the velocities and the pressures inside the
filament that lead to the pinch-up of the drop. Finally, the
numerical results are discussed in the light of drop formation
experiments.

Introduction

Drop-on-demand (DOD) ink-jet print heads in which the
controlled production of ink drops is achieved through the
action of a sudden pressure pulse produced by thermal
means1 or by a piezoelectric device2 are becoming the
preferred method of ink-jet printing3. Indeed they are widely
used for various purposes and cover the whole spectrum
from office printing to large width industrial printing4.

In order to improve the fundamental understanding of
the drop-on-demand technique from applied pressure history
to drop pinch off, numerical calculations need to be
performed at every stage of the process. If standard
commercial codes have proved to be a comprehensive tool
for the development of print heads5, there is still room for
improvement in terms of modeling of the non-linear
dynamics of drop ejection.

The purpose of this paper is to combine the calculations
performed in the print-head and of the free surface shape in
order to allow prediction of the drop behavior. In section 2,
we describe the numerical simulation of the flow in the
nozzle channel for different pressure histories. In section 3,
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we will first develop shortly the stream-tube method6 and
give the initial and boundary conditions for the problem at
hand. As a result of this, we will describe the free surface
evolution of a filament as a function of time.

Numerical Simulation of Channel Flow

Overview
In contrast with the modeling of a continuous liquid jet

break-up process where it is sufficient to give the initial
velocity field7 to start the computation process, the
numerical simulation of the DOD device (see Figure 1),
requires the knowledge of the transient start-up of the liquid
in response to the onset of a pressure pulse8.

Figure 1. Schematic representation of a DOD print head

According to this requirement, we have first developed a
model able to compute the velocity fields at the nozzle
outlet corresponding to different drive pressures. The
pressure transients leading to drop ejection can be generated
by various means as emphasized in the introduction.

The modeling of the fluid flowing in the nozzle channel
can typically be performed like a transient Poiseuille flow in
a pipe. Following Middleman, we assume that the flow is
laminar and that the non-linear inertial terms are small
compared to viscous effects. Moreover, we assume that the
axial velocity is independent of the axial coordinate. When
radial velocity is neglected and since the problem is
axisymmetric the momentum equation reads:
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where µ is the constant viscosity of the fluid, ρ the density
of the fluid, P(t) the transient pressure pulse and w the axial
velocity.

Initial and Boundary Conditions for Nozzle Flow
At initial time, the fluid is quiescent and then suddenly

accelerated. The boundary conditions need to take into
account the no-slip wall condition (2a), the axial symmetry
consideration (2b) and the homogeneous Neumann condition
(2c) on the axis of the nozzle.
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Constant Pressure Drive
In the existing literature8,9, the drive pressure history for

the DOD print head is generally taken to be of a rectangular
form comparable to the driver signal pulse. The choice of a
rectangular form is sufficient for preliminary studies, but in
the future, we would have to consider more realistic
pumping chamber pressures10. The functional relationship
for a simple rectangular pulse is given by the following set
of equations:
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From a numerical point of view, we use a finite
difference method and we apply an explicit scheme for the
resolution of equation (1). Then for each node, we can write:
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In figure 2, we give the velocity on the axis for a given
pressure profile. We notice that the velocity is the highest at
the time when the pressure is set to zero. There is no lag
between pressure and velocity. two typical velocity fields
due to different drive pressures.

Figure 3 depicts the velocity field at the nozzle for
different times and for the same pressure pulse as for figure
2. We have compared the computed drop volume with the
analytical result given by Middleman8. The agreement is
very good and this gives some confidence in the numerical
simulation of the channel flow .

Figure 4 shows again the velocity on the axis for a
different pressure profile. This pressure profile is close to
actual signal drives and includes a positive and a negative
pulse. In contrast to the above case, no analytical results are
available for this complex pressure pulse.

In figure 5 we show the velocity profiles obtained at
different times for the pressure pulse represented in figure 4.
We can note that the velocities become negative near the
32
nozzle walls. The expected result of such an evolution in the
velocities is an enhancement of the pinch off process.

Figure 2. Pressure pulse and axial velocity

Figure 3. Velocity profiles for different times

Figure 4. Pressure pulse and velocity on the axis
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Figure 5. Velocity profiles at different times for the above
pressure pulse

Figure 6. Representation of physical and mapped domains

Stream Tube Method

The basic elements of the stream tube method have been
discussed in an exhaustive manner elsewhere11 and therefore
only the main features necessary for the understanding of the
results given hereinafter will be presented in this section.

Nozzle

Streamlines

Physical Domain D

Mapped Domain D

Mapped Streamlines
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Transformation of the Physical Domain
In contrast to classical analyses of flow simulation, the

approach given here involves a transformation function f
between a physical domain D and its mapped domain D*
where the transformed streamlines are parallel and straight as
shown in figure 6.

The function f is an unknown of the problem to be
solved in the mapped domain which is geometrically much
simpler. An another requirement of the stream tube method
is to define reference sections. In this problem, we have to
consider two reference sections, one at the nozzle and the
other one on the free surface as shown in figure 7.

Figure 7. Reference section on the free surface

The Constitutive Equations
In this sub-section, we define the governing equations

for our problem. Taking into account the incompressibility
and the axisymmetric conditions, the momentum equation
can be cast as shown below:
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where σ  is the total stress tensor.
The different assumptions given above lead to the

following equations written in cylindrical coordinates:
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Since the components of the extra-stress tensor are
written in an implicit manner, the introduction of elaborate
constitutive equations can be performed in a straightforward
way. This will allow in the future to account for complex
fluid behavior.

Reference Section N°2

 nozzle
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Initial and Boundary Conditions for Free Surface
F l o w

At time t equal to t0, the fluid is assumed to be in a
quiescent state. For all times, the boundary conditions are
the following:

•  On Γ1, the velocities are known
•  On Γ2, the velocities are equal to zero.
•  On Γ 3, which is the free surface, the effect of the

surface tension is considered.
The boundary evolutions are shown in figures 8 and 9

for initial and subsequent times.

Figure 8. Boundaries at initial time

Figure 9. Boundaries at later time

Figure 10. Free surface shapes at different times

Preliminary Results
In figure 10, we show the evolution of the free surface

as a function of time. The axis have been made
dimensionless by dividing by the nozzle radius. At the latest
time shown here, there is a beginning of filament pinching.
This result is encouraging in view of the velocity and

Nozzle

Nozzle walls

Free surface

Nozzle Nozzle walls
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pressure fields which have been obtained. Nevertheless, at
that time we have to re-mesh finely near the free surface at
the expense of additional computational time.

Conclusion

In this paper, we have detailed the procedure for the
modeling of the drop formation in a DOD device. We have
proposed a numerical method for the calculation of the
velocity profiles at the nozzle exit for different pressure
histories. Concerning the drop formation problem, we have
introduced a stream-tube formulation of the governing
equations together with appropriate initial and boundary
conditions. The results obtained at the initial stages of
filament pinching are encouraging. Presently, we are in the
process of reducing the computational time in order to
account for re-meshing and to add further sophistication to
the numerical simulation of drop formation behavior.
Additional features are needed to obtain closer agreement
between experimental and computed profiles.
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