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Abstract
In this paper we compare and contrast two well know

approaches for designing screen functions: direct bina
search (DBS) and void and cluster (V&C). They are bo
iterative, search based methods that minimize a metric
error between the perceived halftone and the perceiv
continuous-tone original image. Despite the many diffe
ences between these two approaches, these is a close
respondence between them. In this paper, we will exp
these links in detail, and examine their implications for t
performance of both algorithms.

1 Introduction
Halftoning algorithms are used to transfor

continuous-tone grayscale images into binary imag
This process is necessary to render the image by a l
or inkjet printer. Due to the lowpass characteristics of t
human visual system (HVS), these rendered images
perceived as exhibiting grayscale. Thus, the objective
every halftoning algorithm is to minimize some measu
of the difference between the perceived halftone a
perceived continuous-tone image. An efficient halftoni
method is to employ an array of thresholds to screen
continuous-tone image. Such methods require only o
threshold comparison per halftone pixel. In this pap
we compare and contrast two well known approaches
designing screen functions: Direct binary search (DB
and void and cluster (V&C).

V&C consists of two stages. During the first stage, t
prototype binary pattern is designed. Starting with the p
totype binary pattern, the remaining levels in the dot profi
function are designed during the second stage. Althou
different strategies may be employed using DBS [1],
compare and contrast DBS and V&C it is convenient
follow the same approach. We will show that under certa
conditions, DBS and V&C very nearly coincide throug
out each stage. Note, the dither array and prototype
nary pattern must exhibit the periodic wrap-arround pro
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erty [2] whereby the top and bottom edges as well as
left and right edgeswrap together. Therefore, the screen
topologically equivalent to the surface of a donut.

1.1 Brief Description of DBS
Direct binary search is a recursive search heuristic. T

algorithm evaluates the effect of trial halftone changes
a measure of perceived errorE. DBS processesa pixel
when it considers the effect onE of changing (toggling)
the pixel’s binary state or exchanging (swapping) the states
of two pixels with different binary states. Only a chang
which reducesE may be accepted. The processing of e
ery halftone pixel is referred to as aniteration. To design
the prototype binary pattern and the subsequent level
the dot profile function, one iteration will not guarante
convergence; several iterations are necessary. In gen
the exact number can not be determined in advance. W
no changes that reduceE are found throughout an entire it
eration, the algorithm has converged. In this way, the p
totype binary pattern and each level of the dot profile fun
tion is designed. Subject to the constraints of a valid scr
design, each pixel at each level of the dot profile functi
will converge to a local minimum of the cost function.

1.2 Brief Description of V&C
Void and cluster only uses a recursive search heuri

during the design of the prototype binary pattern. The
ered halftone global peak and trough represent clusters
voids of dots where the absolute perceived errors are
maximum. To design the prototype binary pattern, pairs
pixels are exchanged in an attempt to minimize these
rors. We refer to this V&C procedure as theprocessingof
a pixel swap. This procedure is repeated recursively u
the prototype binary pattern design converges. To des
subsequent higher (lower) levels of the dot profile fun
tion, dots are toggled on (off) within the maximum voi
(cluster); therank of a pixel is determined by the order in
which dots are added or deleted. Rank increases by 1 w
each added dot, decreases by 1 for each removed dot;
the dither array thresholds increase with pixel rank.
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2 Preliminaries
Throughout this paper, we use[m] = [m,n]T and(x) =

(x,y)T to represent discrete and continuous spatial coo
nates respectively. In addition, the details of Sec. 2 ap
exclusively to DBS except where explicitly specified usi
the subscript ”V&C”.

2.1 Visual Models and Scale Parameter
We model the lowpass characteristics of the HVS w

a linear shift-invariant impulse response. The perceiv
DBS halftone ˜g(x) is defined by interpolating halfton
g[m] with a HVS point spread function (PSF) ˜p(x); so

g̃(x) = ∑
m

g[m]p̃(x−Xm), (1)

whereX is the periodicity matrix whose columns compri
the basis for the lattice of printer addressable dots.

The kernel ˜p(x) is based on the contrast sensitivi
function (CSF) of the human visual system. In Sec. 2
we shall see that the mean-squared error only depe
on p̃(x) through its autocorrelation functioncp̃p̃(x) =∫

p̃(y)p̃(y + x)dy, evaluated on the printer lattice, i.e
cp̃ẽ[m] = cp̃ẽ(Xm). Assuming a printer with resolution
R dots/inch (dpi), an expected viewing distanceD, and a
rectangular lattice of addressable points, we find that

cp̃p̃[m] = D4
∫

h(y)h(y +
m
RD

)dy, (2)

where h is the inverse Fourier transform of the CSF ev
uated at the retina in units of radians, andS≡ RD is the
scale parameter.

V&C uses a simpler visual model. The perceptual fil
kernel is assumed to be a truncated 2D Gaussian func

p̃V&C[m] = W[m]e−m2/2σ2
, (3)

whereW[m] is a 2D rectangular function which extend
over the region of significant support of the Gaussian k
nel andσ=1.5. The parameterσ is used to control thescale
of the visual model. For convenience, the windowed ker
may be normalized to sum to one. However, all chan
accepted by DBS and V&C are based on relative m
nitudes; thus, normalizing is unnecessary. The perce
V&C halftoneg̃V&C[m] is defined by

g̃V&C[m] = ∑
n

g[n]p̃V&C[m−n]. (4)

2.2 Error Metrics
We useg to denote the average absorptance value

g[m]. g is a constant between 0 and 1, whereas the pix
of halftoneg[m] take on values 0 (white) or 1 (black). Ou
goal is to computeg[m] to minimize a measure of a perce
tually filtered version of the error imagee[m] = g[m]−g.
We model the continuous-space perceived error as

ẽ(x) = ∑
m

e[m]p̃(x−Xm). (5)
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The global error measure minimized by DBS is the to
squared perceived error given by

E =
∫
|ẽ(x)|2dx. (6)

V&C focuses its attention on the maximum absolute p
ceived error. The perceived error image is defined as

ẽV&C[m] = ∑
n

e[n]p̃V&C[m−n]. (7)

The V&C heuristic attempts to eliminate the largest d
clusters and voids. As dots are added or removed, V
attempts to maximizeEv

V&C or minimizesEc
V&C, respec-

tively. These error metrics are defined as

Ev
V&C = |min(ẽV&C[m])|, (8)

Ec
V&C = |max(ẽV&C[m])|. (9)

Using these error metrics, V&C may search for the ind
of the next threshold assignment efficiently. In DBS, co
puting the effect of trial change on the mean-squared
ror can be more computationally intensive. Next, we d
scribe an efficient technique for computing the effect
trial changes.

2.3 Efficient Evaluation of the Effect of Trial
Halftone Changes with DBS

To reduce complexity, we employ an efficient procedu
for evaluating the effect of trial halftone changes [3]. W
begin by defining an additional correlation function

cp̃ẽ(x) =
∫

p̃(y)ẽ(y + x)dy. (10)

Then, by substituting (5) into (6), the errorE may be ex-
pressed as

E =
∫

∑
m

∑
n

e[m]e[n]p̃(x−Xm)p̃(x−Xn)dx

= ∑
m

∑
n

e[m]e[n]cp̃p̃[n−m]. (11)

Substituting (5) into (10), we also observe thatcp̃ẽ[m] =
cp̃ẽ(Xm) = ∑n e[n]cp̃p̃[n−m]. Although our error metric
operates upon a continuous-space version of the perce
error image ˜e(x), we may evaluate this measure by com
putingcp̃p̃[m] = cp̃p̃(Xm) only. Consider the effect on ˜e(x)
of a trial change in the states of pixels at indicesm0 and
m1. The new perceived error image ˜e′(x) is

ẽ′(x) = ẽ(x)+ a0p̃(x−Xm0)+ a1p̃(x−Xm1), (12)

wherea0 = −1 if g[m0] = 1, a0 = 1 if g[m0] = 0, a1 = 0 to
toggle one pixel, anda1 = −a0 to swap the binary states
of two pixels. We substitute (12) into (6), to express t
change in error4E as

4E = (a2
0 + a2

1)cp̃p̃[0] + 2a0cp̃ẽ[m0] +

2a1cp̃ẽ[m1] + 2a0a1cp̃p̃[m1−m0]. (13)
1
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4E can be evaluated with a few table lookups and ad
tions. If a trial change is accepted,cp̃ẽ[m] must be updated
to c′p̃ẽ[m] as follows

c′p̃ẽ[m] = cp̃ẽ[m] + a0cp̃p̃[m−m0] +

a1cp̃p̃[m−m1]. (14)

The approach described above can be used to reveal a
respondence between the DBS and V&C error metrics.

3 Relating the DBS and V&C Error
Metrics and Visual Models

Notice the similarty between lowpass filterscp̃p̃[m] and
p̃V&C[m] as illustrated in Fig. 1. However,cp̃p̃[m] is used
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Figure 1:cp̃p̃[m] (a) and ˜pV&C[m] (b). The DBS and V&C
perceptual filter kernels are similar.

to compute thecp̃ẽ[m] LUT to efficiently implement DBS
whereas ˜pV&C[m] is used to compute the perceived err
imageẽV&C[m]. According to the dual interpretation o
DBS [3], cp̃ẽ[m] is another lowpass correlate of perceive
error using the same visual model used to define ˜e(x),
but from twice the viewing distance. Therefore, throug
out the remainder of this paper we will refer tocp̃ẽ[m] as
another correlate of perceived error. To relate DBS a
V&C, we will show that the procedure used in Sec. 2
has the same effect oncp̃ẽ[m] as the V&C heuristic has
on ẽV&C[m]; each have their maximum error minimize
pointwise absolutely.

Consider the impact of toggling one halftone pix
g[m0]. If the toggle reduces errorE, then4E < 0 and
(13) reduces to

1
2

cp̃p̃[0]<−a0cp̃ẽ[m0], (15)

wherea0 = −1 or +1 depending on whetherg[m0] is ini-
tially set to 1 or 0 respectively. This implies that a to
gle reducesE only when|cp̃ẽ[m0]| exceeds a threshold o
1
2cp̃p̃[0]. For a toggle, the update (14) simplifies to

c′p̃ẽ[m] = cp̃ẽ[m] + a0cp̃p̃[m−m0]. (16)

If g[m0] is toggled from 1 to 0,cp̃ẽ[m0] must have been
greater than1

2cp̃p̃[0] before the toggle. After the toggle
is accepted, the update (14) decreasescp̃ẽ[m0] by cp̃p̃[0].
Similarly, if g[m0] is toggled from 0 to 1,cp̃ẽ[m0] must
have been less than−1

2cp̃p̃[0] before the toggle. After
29
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the toggle is accepted, the update (14) increasescp̃ẽ[m0]
by cp̃p̃[0]. In either case, the update decreases|cp̃ẽ[m0]|.
Thus, DBS only accepts toggles which locally reduce t
perceived error imagecp̃ẽ[m] in the pointwise absolute
sense. It can also be shown [3] that accepted trial swa
also reduce|cp̃ẽ[m]|.
3.1 Relating DBS and V&C during the Prototype

Binary Pattern Design
V&C adjusts the prototype binary pattern in an attem

to minimize the maximum absolute filtered error ˜eV&C[m].
First, V&C searches for the pixel set to 1 (black) whic
exhibits the largest positive filtered absorptance error a
begins to process this pixel by toggling it to 0 (white
ẽV&C[m] is then updated to account for the effect of th
toggle. After this update, V&C searches for the pixel s
to 0 which exhibits the largest negative filtered absor
tance error. If this is the same pixel that was toggled
0 in the previous step, then the V&C stopping criterion
satisified; and the prototype binary pattern design has c
verged. Otherwise this pixel is toggled to 1 to comple
the swap. This procedure is repeated iteratively until t
stopping criterion is satisified.

Using our block based optimization strategy [4] wit
a block size equal to the screen size, the DBS and V&
strategies are similar. We also restrict the changes p
formed upon the prototype binary pattern to the swapp
of pairs of pixels with different binary states. Howeve
the methodology used by DBS differs from that of V&C
in two ways. First, the DBS and V&C stopping criteria de
scribed in Sec. 1.1 and 1.2 differ. Furthermore, each sw
accepted by V&Cmustinvolve the pixel set to 1 which ex-
hibits the largest positive filtered absorptance error. T
aspect of the V&C search is based exclusively on the er
before the change is made. Alternatively, the changes
DBS accepts are only based on the difference between
error before and what the error will be after the change
made. These are important distinctions. Knowing whi
pixels to process and when to terminate processing w
significantly effect the quality of the final pattern as illus
trated in Fig. 2. A local minimum of both the DBS an

 (a)  (b) 

Figure 2: Prototype binary pattern with hexagonal latti
(a) and perturbed lattice (b).

V&C cost functions is illustrated in Fig. 2(a); this patter
2
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resembles a hexagonal packing pattern. DBS and V
each use a circircularly symmetric kernel which decrea
monotonically as a function of Euclidean distance from
kernel center. Thus, neither DBS nor V&C will accept a
changes due to the symmetry of this pattern. The nea
black neighbors of each minority black pixel are a co
stellation of six roughly equidistant pixels. Referring
the pixel in the middle of the circle as thecenterpixel,
its six black nearest neighbors reside in an annulus c
to the circle boundry. Refer to these six dots as thesur-
roundingdots. Now modify this pattern by moving ea
of the surrounding dots slightly closer to the center do
generate the pattern of Fig. 2(b). Clearly, the center p
is the black pixel with maximum filtered absorptance a
V&C will attempt to swap it. Since the surrounding do
have only moved slightly, toggling the center pixel crea
the largest void; so the center pixel is restored and V
terminates processing. DBS will find opportunities for
ducing function cost at each of the surrounding dots; th
dots will be swapped into positions further from the cen
pixel and thus, reduces the maximum absolute error. W
DBS converges, the original pattern or a similar one w
have been generated.

We have established that DBS and V&C accept a
quence of swaps in an attempt to decrease the maxim
absolute filtered error. However, it is not obvious that
dating the filtered pattern following an accepted toggle
m0 may not tend to increase the maximum absolute filte
error for somem 6= m0 within the region of support of th
perceptual filter kernel. For DBS, this subtle issue has b
resolved with a proof [3]. This proof shows that DBS
guaranteedto achieve a local minimum pointwise abs
lutely. However, the V&C perceptual filter fails to satisi
the conditions of this proof, and V&C does not actua
confirm that a reduction in error results from a swap. O
casionally, V&C accepts swaps that increase function c

3.2 Relating DBS and V&C during the Design of
the Remaining Levels of the Dither Array

Consider the design of a screen function intended to
narize 8-bit graylevel imagery. Assume the screen fu
tion has heightH, width W whereHW� 255. Assum-
ing an ideal printing device, the dither array is expec
to preserve tone if each level of gray (except 0) matc
HW/255 of the threshold values. V&C designs the dith
array by ranking pixels from 1 toHW whereas DBS rank
pixels in groups of sizeHW/255.

Consider the design of the higher levels of the dot p
file function. V&C ranks the pixels of the dither array b
adding dots to the prototype binary patternone-at-a-time.
The added dot is placed into the largest void. This is
peated until no zeros remain. As described in Sec. 3, D
could begin by following a similar strategy. The large
void within cp̃ẽ[m] can determine the first dot placeme
2
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Thencp̃ẽ[m] is updated; and the next largest void is found
In this way, the placement of allHW/255 consecutive tog-
gles may be determined. After these toggles are accep
DBS then allows these dots to be swapped around in
der to jointly optimize their placement. In general, sever
DBS iterations are required during which overHW/255
swaps are accepted. Clearly, V&C uses a greedy strat
for each threshold assignment whereas DBS jointly op
mizes for a series of threshold assignments correspo
ing to each graylevel. Since the joint optimization i
performed after the dots are first added (using the sa
method as does V&C), each accepted swap reduces fu
tion cost below the level attained without joint optimiza
tion. So, the DBS strategy attains better quality at ea
graylevel.
4 Conclusions

By design, DBS accepts halftone changes to gener
a halftoneg[n] which locally minimizes ˜e(x) in the mean
square sense. These changes also locally reduce ano
perceptual error correlatecp̃ẽ[n] in the minimax absolute
sense [3]. This latter metric resembles that of V&C.

We have shown that V&C uses a premature stoppi
criterion compared to DBS. Therefore, DBS is likely to
design a more optimal prototype binary pattern. In add
tion, throughout the second stage V&C uses a greedy st
egy for each threshold assignment. Using our block bas
strategy [4], DBS jointly optimizes over a series of simu
taneous threshold assignments. In particular, the thre
old selection process used in the second stage of V&C h
been shown to be a proper subset of the procedures use
DBS. Thus using DBS will result in a lower cost at eac
gray level.
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