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Abstract

“What is the most efficient1 way to generate graysc
– by increasing pixels/inch or by increasing bits/pixel
Simulations, preference judgements and computatio
image quality metrics all converge to yield the same ans
The most efficient way to generate high-quality
photographic images is to increase the number o
graylevels/pixel. Consider, for example, two photograp
images printed at the same size: A 3 bit/pixel grayscale
image is printed at 300 DPI and takes only 0.09
megabytes of file space. A 1 bit/pixel grayscale is printe
1200 DPI and takes 0.5243 megabytes of file sp
Although the images appear to be the same size, they d
appear to have the same image quality. Both empirical 
and image quality metrics predict that the 300 DPI grays
image will have higher perceived image quality than 
1200 binary image. Clearly, for photographic image qua
it is much wiser to dedicate bits to grayscale (bits/pix
than to DPI (pixels/inch).

Introduction

Most people use the word “resolution” to refer to t
number of dots a printer can place per inch of paper (D
This colloquial usage often leads to confusion in techn
discussions. Technically speaking, the resolution of a pri
refers to the size and shape of a printed dot and NOT
number of dots per inch. Resolution is an adequ
descriptor of an analog imaging system such as an op
lens (describing the spatial transformation of a point li
source into a two-dimensional gaussian spot), but it is no
adequate descriptor of a digital imaging system such 
printer or display. This is because digital imaging syste
place pixels, dots or spots on an addressable grid. Thu
describe the imaging capabilities of a digital imagi
system, we must specify both the device addressability” 
number of pixels/inch, dots/inch or DPI) and the dev
“resolution” (the size and shape of a pixel.). Most print
                                                          
1 I use the word “efficient” to refer to the solution that requires less d
space: If two grayscale images are perceptually equivalent in appearan
the image that requires less disk storage space is more “efficient”. T
argument does not consider the effects of image compression which
reduce disk space requirements considerably.
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and displays are designed such that pixel size sc
inversely with pixel addressability (hence the two terms 
easily confused).

Graylevels per pixel is another imprecise term. Both 
distribution of graylevels over luminance and th
distribution of graylevels over space influence t
perception of image quality. For example, holding t
number of graylevels per pixel fixed, perceived imag
quality is influenced by the actual luminance values of th
pixels (i.e. the distribution of graylevels over luminance
Again, holding the number of graylevels per pixel fixe
perceived image quality is influenced by the digit
halftoning method one uses to map many graylevels 
fewer graylevels. (i.e. distribution of graylevels over spac
When inquiring about a printer or display, one should n
only ask about how many bits/pixel and pixels/inch t
device can address, but how those bits and pixels 
distributed over intensity and space.

With these caveats in mind, we proceed to describe 
observations of how image quality depends both 
addressability (dpi) and grayscale (bits/pixel). The quest
we posed was: “How should we allocate our bits in print
order to optimize image quality -- by increasing dpi or 
increasing bits/pixel?”. The answer we found was 
depends”. It depends on the content or nature of the im
we want to print. There is very little improvement in th
perceived image quality of text when we increase
addressability beyond 600 dpi. But the perceived ima
quality of photographic images does continue to improve
with addressabilities greater than 600 dpi. Why is this?

Text
Text is a high-frequency binary signal. When text 

sampled at a relatively low frequency, the sampling artifa
(often referred as “jaggies”) will be perceptible. However,
the sampling frequency is high, relative to the optic
resolution of the lens of our eyes, we will not perceive 
sampling artifacts. We do not need to represent or p
frequencies that are present in text but are beyond 
resolution limit our our eyes. Since the lens of our eyes b
spatial frequencies greater than approximately 60 cycles
degree of visual angle [4,5] we need only sample 1
cycles/degree (the “Nyquist limit” of our optical system). A
a typical viewing distance of 12 inches, a sampling rate
120 cycles/degree corresponds to approximately 600 DP
2



ie

g
c
r
g
a
l
p
 
i 
i
a
x

re

p
in
s

e
t
s
re
r

a

 
n
c
 d
th
 
io
 
T
t
n

u
e

f
a
a
 
n
u
c

 s
 
t 
s

00

s of
ith

igh
ted
wer
lay
wer
on
ted

g a
ied

ity
 24
 in
yed
tive
ted
ssing
the
own

. In
 the
dpi)
n,

rent
two

ined
(or

e of
ed
 a
ur

IS&Ts NIP 14: 1998 International Conference on Digital Printing TechnologiesIS&Ts NIP 14: 1998 International Conference on Digital Printing Technologies Copyright 1998, IS&T
we sample below the Nyquist limit, with addressabilit
below 600 DPI, the sampling artifacts will be visible.

One method for reducing the visibility of samplin
artifacts generated when we sample text at frequen
below our Nyquist limit is to pre-blur the text befo
sampling. This method, often referred to as “anti-aliasin
uses grayscale information to represent the blurred im
[6]. Although the sampling artifacts may be less visib
blurred text will never be as pleasant to read as text sam
with higher frequencies [7]. Therefore, it always better
sample at the Nyquist limit of our optical system (600 dp
a 12 inch viewing distance). Sampling with frequenc
higher than the Nyquist limit does not gener
improvement in the perceived image quality of te
however, because these higher frequencies have al
been removed by the optics of our visual system.

Images
Why, then, does the perceived image quality 

photographic images appear to increase when we sam
beyond the Nyquist limit of our visual system? Increas
device addressability beyond 600 dpi effectively increa
the number of perceived graylevels: Perceived graylev
determined by the number of pixels that are blurred toge
as a result of the optical point spread function of the len
our eye. The number of perceived graylevels one can c
by blurring pixels together is determined both by the a
over which the eye blurs and the number of pixels per 
[8].

There are many ways to increase the number
graylevels/area in a printed image. One can vary the de
of dots that fall within a fixed area (defined by the opti
point spread function of our eyes) or one can vary the
density of the dots that fall on a particular spot within 
fixed area. And, of course, one can vary both dots/area
density/dot. This brings us back to our original quest
“What is the most efficient way to generate grayscale –
increasing pixels/inch or by increasing bits/pixel?”. 
answer this question, we developed methods for simula
the output of devices with different addressability a
grayscale capabilities. We developed methods 
quantifying how people perceive the image quality of s
devices. And we developed metrics to predict th
subjective judgements.

Printer Addressability (pixels/inch) and
Grayscale (bits/pixel)

Printer Simulations
To investigate how grayscale and addressability af

image quality in regions of unexplored printer design sp
we created a 1200 dpi device with 8 bits of address
grayscale [9]. We placed a relatively high-resolution 24
color CRT at the end of a long tunnel. The tunnel was li
with black felt cloth to eliminate depth information abo
the actual location of the CRT. Inside the tunnel, we pla
two camera lenses between the CRT at one end and a
hole at the other end. The camera lenses enabled us to
minify and focus a virtual image of the CRT display a
distance of 12 inches from the viewing hole. The focu
57
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virtual image had an effective visual addressability of 12
dpi.

We used the 1200 dpi display to present simulation
lower-resolution images (200, 300, 400 and 600 dpi) w
varying grayscale capability [10]. We first created a h
resolution (2Kx2K) 8 bit grayscale image. We decima
the image (low-pass followed by sampling) to create lo
resolution images. After correcting for printer and disp
non-linearities, we mapped the 8 bit grayscale map to fe
bits using the Floyd and Steinberg [11] error diffusi
algorithm. To create the simulated images, we interpola
(upsampled) the lower resolution images to 2Kx2K usin
modified gaussian model of a printed dot. We appl
gamma correction before displaying the images.

To test the validity of our printer model and our abil
to render simulations of printed output on our 1200 dpi
bit color display, we conducted a control experiment
which we compared subjective judgements of displa
simulations of 200 dpi grayscale images with subjec
judgements of printed 200 dpi grayscale images. Prin
images were generated using the same image proce
pipeline described above, with the exception that 
interpolation stage was unnecessary. Subjects were sh
the printed and displayed images at two different times
the printer condition, subjects were asked to rank order
different grayscale images (2, 4, ... 256 levels at 200 
from worst to best image quality. In the display conditio
subjects were shown pairwise combinations of the diffe
grayscale images and asked to indicate which of the 
images they preferred. Image quality ratings were obta
by summing the number of time subjects preferred 
ranked) one image over the other.
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Figure 1. Image quality score (estimated by the percentag
trials in which subjects preferred (display condition) or rank
(printer condition) one image over the number plotted as
function of number of graylevels. Data are shown for fo
subjects.
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Figure 1 compares image quality ratings for printed 
displayed simulations for four subjects. The relations
between image quality scores and number of grayleve
similar for both the printed and displayed simulations. 
concluded that the displayed simulations were a reason
approximation to the appearance of printed images (
Anthony and Farrell [3] for details about the print
simulation, empirical data and analysis.)

Subjective Evaluation
The method of pairwise comparison generates relia

and informative data about perceived image quality ab
threshold. In this method, subjects are presented with 
stimuli at any given time and asked to indicate which of 
two stimuli “looks better” to them. This method requires 
apriori decisions (assumptions) about the fact
determining their judgements. Rather, it enables us to
assumptions about how many different factors (such
addressability and graylevels, for example) affect sup
threshold judgements about image quality.

We presented all pairwise combinations of images 
differed in both addressability (300, 600 and 1200 DPI) 
number of graylevels (2, 4, 8 and 12) and asked subjec
indicate which of any two presented combinations th
preferred [10]. Since there were 12 different stimuli, t
required a minimum of 132 comparisons. Each of the f
people who volunteered to be subjects in our experim
viewed each comparison 10 times over the course 
week. Thus for each subject, we collected data over 1
trials (see [12] for an adaptive pairwise comparison met
that reduces the number of trials while maximizing 
information content of the confusion matrix).

To test the hypothesis that addressability and grayle
directly tradeoff we analyzed the stimulus comparis
matrix to determine if the stimuli could be ordered alo
one dimension (or preference vector) and if differ
combinations of grayscale and addressability resulted
equivalence along this dimension. We used several diffe
statistical methods [12, 14] to determine that 
dimensionality (or rank) of the stimulus matrix was 1. T
result is significant because it demonstrates that grays
and addressability tradeoff, such that one can ob
equivalent preference judgements by different combinat
of grayscale and addressability. When two images have
same DPI, subjects prefer the image with the higher num
of graylevels. Conversely, when two images have the s
number of graylevels, they prefer the image that has
higher DPI. Figure 2 shows that one can offset a decrea
DPI with an increase in number of graylevels to ke
perceived image quality constant. Similarly, one c
decrease the number of graylevels if one increases DP
keep perceived image quality constant. In other wo
grayscale and addressability map into a single dimensio
perceived image quality. We turn now to consider a me
that predicts image quality as a function of grayscale de
and addressability.
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Figure 2. Image quality score plotted as a function of the num
of graylevels with addressability (dpi) as a parameter. Data fo
four subjects are shown.

Metrics
Just as we use printer modeling and simulation tool

present images to subjects that would be generated 
device, in the absence of the device, we can 
computational image quality metrics to predict how peo
would judge images, in the absence of people. We hav
our disposal a collection of different metrics designed
predict the visibility of film grain, toner particles, halfton
texture, printer banding and JPEG compression artif
[15]. Since we hypothesized that subjects’ judgements in
grayscale/addressability study were determined in large
by the visibility of the halftone texture, we were interes
in comparing the predictions of a metric developed
predict halftone texture visibility to the empirical data w
collected in our experiments [3, 10].

The halftone texture visibility metric we used w
developed by Zhang and Wandell [16,17 ] as a spa
extension to CIELAB. This metric, referred to as 
CIELAB, imposes three pre-processing stages before
computation of the CIELAB color difference metric, �E.
First, the input image is converted from a device- depen
space into a device-independent representation consisti
one luminance and two chrominance color compone
Second, each component image is passed through a s
filter that represents the spatial sensitivity of the hum
visual system for that color component. Third, the filte
images are transformed into the CIE-XYZ format so t
standard CIELAB color difference metrics can 
computed.

One of the advantages of the S-CIELAB metric is t
it is backwardly compatible with CIELAB in the sense th
for large uniform targets the S-CIELAB predictions are 
same as the CIELAB predictions. For textured regio
however, the two formulae make very different predictio
Another advantage of S-CIELAB is that the units of t
metric already have special meaning in the enginee
4
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community. Color scientists and engineers are accusto
to reporting perceived color differences in units of �E.

We used the metric to make predictions about 
visibility of halftone texture as a function of devic
addressability and number of graylevels. To compare th
predictions with our empirical data, we used the sa
halftoning method (error diffusion) and the same origi
image. The results, shown in Figure 3, are predictions ba
on a standard test pattern that we developed later. The
pattern is an exponential grayscale ramp that span
degrees of visual angle [18]. We prefer the standard 
pattern because it samples a wider range of grays
values. (The predictions are comparable to the predict
based on the original image.)
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Figure 3. Iso-quality contour plots for grayscale ramp imag
Each curve represents the combinations of grayscale 
addressability that generate the same S-CIELAB �E value. The
direction of the arrow indicates increasing image quality. (
Grayscale ramp was halftoned using linear spacing of luminan
(B) Grayscale ramp was halftoned with levels equally spaced in
L*.

The predictions shown in Figure 3 are based on 
assumption that a standard visual observer (modeled by
S-CIELAB metric) viewed the test pattern from a distan
of 12 inches. We computed the S-CIELAB differenc
between the continuous grayscale ramp and diffe
possible halftoned ramps. The halftoned ramps differed
addressability and grayscale.
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Figure 3 shows iso-quality contours for the test patt
halftoned with different number of graylevels and differe
addressability. Each curve in the figures plots t
combinations of grayscale and addressability that gene
the same S-CIELAB �E values. Figure 3a shows
measurements using linear halftone level spacing 
Figure 3b shows measurements using L*-spacing 
halftone levels. Together the curves support the conclus
of our empirical investigations of grayscale/addressabi
tradeoffs. When equated for the number of halftone lev
L*-spacing of the levels is predicted to have better ima
quality than linear-spacing. Halftone errors do not decre
linearly with the increase of DPI or number of grayleve
Rather, as the halftone levels increase beyond 16, or
increases beyond 800 dpi, the halftone quality impro
very little [17].
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Figure 4. Comparision of stimulus conditions that generate 
CIELAB �E values of 1.0 (see Figure 3) to stimulus conditio
that generated “threshold” and “suprathreshold” judgements
Threshold judgements (denoted with “o”) refer to stimulu
conditions that were indiscriminable from the image rendered
1200 dpi with 256 graylevels. Suprathreshold judgements
(denoted with “+”) refer to stimulus conditions that were alway
discriminable from the 1200 dpi, 256 graylevel image. Again, the
arrow indicates the direction of increasing image quality.

S-CIELAB, like CIELAB, predicts perceptua
thresholds for detecting the difference between two retin
images and, in this case, the difference between a con
and a halftone grayscale image. Each curve in Figur
denotes a particular threshold value. Figure 4 compares
predictions of the S-CIELAB metric to the empirical da
we collected in our experiments. The empirical data 
plotted as a function of the pixel addressability conditio
(bits/pixel and pixels/inch) and categorized into one of t
categories: threshold and suprathreshold judgeme
Threshold judgements refer to conditions in which imag
were perceptually equivalent to the 1200 dpi, 8 bit (2
levels) grayscale image (1200 dpi with 4, 8 and 12 lev
600 dpi with 4, 8 and 12 levels and 300 dpi with 8 and 
levels). Suprathreshold judgements refer to conditions
which subjects could always tell the difference between 
1200 dpi, 8 bit grayscale image and the halftoned im
5
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(300, 600 and 1200 dpi with 2 levels and 300 dpi with
levels). The data are plotted in this way to illustrate 
following observation: S-CIELAB values of 1.0 separate 
threshold and suprathreshold stimulus conditions. When
S-CIELAB difference metric was greater than 1.0, subje
could always perceive the difference between a halftone
contone image. In other words, halftone texture was vis
in images with S-CIELAB values greater than 1.0. Wh
the S-CIELAB difference metric was less than 1.0, subje
could not perceive the difference between a halftone 
contone image.

S-CIELAB makes predictions that are also consist
with other experiments we have conducted on the visib
of halftone texture in color images [17, 18]. For examp
the metric predicts that the increase in image quality w
increasing grayscale depth is greater for black, magenta
cyan, in that order. S-CIELAB predicts that there is 
improvement in image quality with increasing the numb
of levels for the yellow inks. These predictions a
consistent with our own observations and support the de
decisions we made for the HP Photosmart Printer.

Conclusion

This paper posed the question: What is the best wa
allocate bits to optimize photographic image quality? 
answer this question, we developed methods for simula
the output of devices with different addressability a
grayscale capabilities. We developed methods 
quantifying how people perceive the image quality of su
devices. And we developed metrics to predict th
subjective judgements. All three methods converged u
the same answer: The most efficient way to generate high
quality photographic images is to increase the numbe
bits/pixel or graylevels/dot.
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