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Abstract and displays are designed such that pixel size scales
inversely with pixel addressability (hence the two terms are
“What is the most efficientl way to generate grayscaleasily confused).
— by increasing pixels/inch or by increasing bits/pixel?”. Graylevels per pixel is another imprecise term. Both the
Simulations, preference judgements and computationalistribution of graylevels over Iluminance and the
image quality metrics all converge to yield the same answedistribution of graylevels over space influence the
The most efficient way to generatéhigh-quality perception of image quality. For example, holding the
photographic images is to increase the number of number of graylevels per pixel fixed, perceived image
graylevels/pixel. Consider, for example, two photographiquality is influenced by the actual luminance values of those
imagesprinted at the same sizé\ 3 bit/pixel grayscale pixels (i.e. the distribution of graylevels over luminance).
image is printed at 300 DPI and takes only 0.0983Again, holding the number of graylevels per pixel fixed,
megabytes of file space. A 1 bit/pixel grayscale is printed gberceived image quality is influenced by the digital
1200 DPI and takes 0.5243 megabytes of file spacdialftoning method one uses to map many graylevels into
Although the images appear to be the same size, they do rfetver graylevels. (i.e. distribution of graylevels over space).
appear to have the same image quality. Both empirical dat&hen inquiring about a printer or display, one should not
and image quality metrics predict that the 300 DPI grayscalenly ask about how many bits/pixel and pixels/inch the
image will have higher perceived image quality than thelevice can address, but how those bits and pixels are
1200 binary image. Clearly, for photographic image qualitydistributed over intensity and space.
it is much wiser to dedicate bits to grayscale (bits/pixel)  With these caveats in mind, we proceed to describe our

than to DPI (pixels/inch). observations of how image quality depends both on
) addressability (dpi) and grayscale (bits/pixel). The question
Introduction we posed was: “How should we allocate our bits in print in

order to optimize image quality -- by increasing dpi or by

Most people use the word “resolution” to refer to theincreasing bits/pixel?”. The answer we found was “It
number of dots a printer can place per inch of paper (DPIdepends”. It depends on the content or nature of the image
This colloquial usage often leads to confusion in technicalve want to print. There is very little improvement in the
discussions. Technically speaking, the resolution of a printgerceived image quality oftext when we increase
refers to the size and shape of a printed dot and NOT tteeldressability beyond 600 dpi. But the perceived image
number of dots per inch. Resolution is an adequatquality of photographic imagesioes continue to improve
descriptor of an analog imaging system such as an opticaiith addressabilities greater than 600 dpi. Why is this?
lens (describing the spatial transformation of a point light
source into a two-dimensional gaussian spot), but it is not ahext
adequate descriptor of a digital imaging system such as a Text is a high-frequency binary signal. When text is
printer or display. This is because digital imaging systemsampled at a relatively low frequency, the sampling artifacts
place pixels, dots or spots on an addressable grid. Thus, toften referred as “jaggies”) will be perceptible. However, if
describe the imaging capabilities of a digital imagingthe sampling frequency is high, relative to the optical
system, we must specify both the device addressability” (theesolution of the lens of our eyes, we will not perceive the
number of pixels/inch, dots/inch or DPI) and the devicesampling artifacts. We do not need to represent or pass
“resolution” (the size and shape of a pixel.). Most printerdrequencies that are present in text but are beyond the
resolution limit our our eyes. Since the lens of our eyes blur
spatial frequencies greater than approximately 60 cycles per
' | use the word “efficient” to refer to the solution that requires less diSkdegree of visual angle [4,5] we need only sample 120
space: If twagrayscaleimages are perceptually equivalent in appearancecydesldegree (the “Nyquist limit” of our optical system). At
the image that requires less disk storage space is more “efficient”. Thig typical viewing distance of 12 inches, a sampling rate of

argument does not consider the effects of image compression which cam( cycles/degree corresponds to approximately 600 DPI. If
reduce disk space requirements considerably.
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we sample below the Nyquist limit, with addressabilitiesvirtual image had an effective visual addressability of 1200
below 600 DPI, the sampling artifacts will be visible. dpi.

One method for reducing the visibility of sampling We used the 1200 dpi display to present simulations of
artifacts generated when we sample text at frequencidswer-resolution images (200, 300, 400 and 600 dpi) with
below our Nyquist limit is to pre-blur the text before varying grayscale capability [10]. We first created a high
sampling. This method, often referred to as “anti-aliasing”resolution (2Kx2K) 8 bit grayscale image. We decimated
uses grayscale information to represent the blurred imagéise image (low-pass followed by sampling) to create lower
[6]. Although the sampling artifacts may be less visibleresolution images. After correcting for printer and display
blurred text will never be as pleasant to read as text sampledn-linearities, we mapped the 8 bit grayscale map to fewer
with higher frequencies [7]. Therefore, it always better tdbits using the Floyd and Steinberg [11] error diffusion
sample at the Nyquist limit of our optical system (600 dpi atlgorithm. To create the simulated images, we interpolated
a 12 inch viewing distance). Sampling with frequenciequpsampled) the lower resolution images to 2Kx2K using a
higher than the Nyquist limit does not generatemodified gaussian model of a printed dot. We applied
improvement in the perceived image quality of text,gamma correction before displaying the images.
however, because these higher frequencies have already To test the validity of our printer model and our ability

been removed by the optics of our visual system. to render simulations of printed output on our 1200 dpi 24
bit color display, we conducted a control experiment in
Images which we compared subjective judgements of displayed

Why, then, does the perceived image quality ofsimulations of 200 dpi grayscale images with subjective
photographic imagesappear to increase when we samplejudgements of printed 200 dpi grayscale images. Printed
beyond the Nyquist limit of our visual system? Increasingmages were generated using the same image processing
device addressability beyond 600 dpi effectively increasepipeline described above, with the exception that the
the number of perceived graylevels: Perceived graylevel ismterpolation stage was unnecessary. Subjects were shown
determined by the number of pixels that are blurred togetheéhe printed and displayed images at two different times. In
as a result of the optical point spread function of the lens dhe printer condition, subjects were asked to rank order the
our eye. The number of perceived graylevels one can creatiéferent grayscale images (2, 4, ... 256 levels at 200 dpi)
by blurring pixels together is determined both by the arefrom worst to best image quality. In the display condition,
over which the eye blurs and the number of pixels per aresubjects were shown pairwise combinations of the different
[8]. grayscale images and asked to indicate which of the two

There are many ways to increase the number ofnages they preferred. Image quality ratings were obtained
graylevels/area in a printed image. One can vary the densiby summing the number of time subjects preferred (or
of dots that fall within a fixed area (defined by the opticalranked) one image over the other.
point spread function of our eyes) or one can vary the dye
density of the dots that fall on a particular spot within the
fixed area. And, of course, one can vary both dots/area and
density/dot. This brings us back to our original question: « Jpeerver P 80 erer?
“What is the most efficient way to generate grayscale — by
increasing pixels/inch or by increasing bits/pixel?”. To
answer this question, we developed methods for simulatinggjz
the output of devices with different addressability and ®

grayscale capabilities. We developed methods for o Display 20 © Display
guantifying how people perceive the image quality of such w» + prmer 10 - prner
devices. And we developed metrics to predict these %@ s w0 = o 20 % s w0 im0 o 20
. . . Number of Grey-Levels Number of Grey-Levels
subjective judgements.
Observer R Observer G
Printer Addressability (pixels/inch) and . .
Grayscale (bits/pixel) 0 %
50 50
Printer Simulations g oo P Re——
To investigate how grayscale and addressability affect zz o Display 22 o Display
image quality in regions of unexplored printer design space + priner 10 + priner
we created a 1200 dpi device with 8 bits of addressable o ——— o
grayscale [9]. We placed a relatively high-resolution 24 bit Number of Grey-Levels Nomber o Grey-Levels

color CRT at the end of a long tunnel. The tunnel was lined

with black felt cloth to eliminate depth information about

the actual location of the CRT. Inside the tunnel, we placefiigure 1. Image quality score (estimated by the percentage of
two camera lenses between the CRT at one end and a sniifils in which subjects preferred (display condition) or ranked

hole at the other end. The camera lenses enabled us to bRfinter condition) one image over the number plotted as a
minify and focus a virtual image of the CRT display at afunction of number of graylevels. Data are shown for four

distance of 12 inches from the viewing hole. The focuse@ubjects.
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Figure 1 compares image quality ratings for printed ant Observer A Observer J
displayed simulations for four subjects. The relationshig e B 1
between image quality scores and number of graylevels ,% * / N
similar for both the printed and displayed simulations. We % 0%/
concluded that the displayed simulations were a reasonak & |/ Fo 300 dp 8
approximation to the appearance of printed images (Se |/ ; ;fliggoddpgi
Anthony and Farrell [3] for details about the printer
simulation, empirical data and analysis.) — o 2 q R "

umber Grey-Levels umber Grey-Levels
Subjective Evaluation 100 Observer X 100 Observer ©

The method of pairwise comparison generates reliabl
and informative data about perceived image quality abov R el =2ttt B el = it
threshold. In this method, subjects are presented with tw., S+ o S+
stimuli at any given time and asked to indicate which of thes *| g%
two stimuli “looks better” to them. This method requires no K K
apriori  decisions (assumptions) about the factor¢ ¥ ¥
determining their judgements. Rather, it enables us to te §—; : 1 o : T
assumptions about how many different factors (such a. Number Grey-Levels Number Grey-Levels

addressability and graylevels, for example) affect supra-. ) )
threshold judgements about image quality. Figure 2. Image quality score plotted as a function of the number

We presented all pairwise combinations of images tha?f graylgvels withaddressability (dpi) as a parameter. Data for
differed in both addressability (300, 600 and 1200 DPI) andP" subjects are shown.
number of graylevels (2, 4, 8 and 12) and asked subjects to
indicate which of any two presented combinations thewletrics
preferred [10]. Since there were 12 different stimuli, this  Just as we use printer modeling and simulation tools to
required a minimum of 132 comparisons. Each of the foupresent images to subjects that would be generated by a
people who volunteered to be subjects in our experimergevice, in the absence of the device, we can use
viewed each comparison 10 times over the course of @omputational image quality metrics to predict how people
week. Thus for each subject, we collected data over 132Qould judge images, in the absence of people. We have at
trials (see [12] for an adaptive pairwise comparison methodur disposal a collection of different metrics designed to
that reduces the number of trials while maximizing thepredict the visibility of film grain, toner particles, halftone
information content of the confusion matrix). texture, printer banding and JPEG compression artifacts
To test the hypothesis that addressability and grayleve[a5]. Since we hypothesized that subjects’ judgements in the
directly tradeoff we analyzed the stimulus comparisoryrayscale/addressability study were determined in large part
matrix to determine if the stimuli could be ordered alongpy the visibility of the halftone texture, we were interested
one dimension (or preference vector) and if differentn comparing the predictions of a metric developed to
combinations of grayscale and addressability resulted ipredict halftone texture visibility to the empirical data we
equivalence along this dimension. We used several differegbllected in our experiments [3, 10].
statistical methods [12, 14] to determine that the The halftone texture visibility metric we used was
dimensionality (or rank) of the stimulus matrix was 1. Thisdeveloped by Zhang and Wandell [16,17 ] as a spatial
result is significant because it demonstrates that grayscaégtension to CIELAB. This metric, referred to as S-
and addressability tradeoff, such that one can obtaiCIELAB, imposes three pre-processing stages before the
equivalent preference judgements by different combinationsomputation of the CIELAB color difference metrisE.
of grayscale and addressability. When two images have tt@rst, the input image is converted from a device- dependent
same DPI, subjects prefer the image with the higher numbehace into a device-independent representation consisting of
of graylevels. Conversely, when two images have the samshe luminance and two chrominance color components.
number of graylevels, they prefer the image that has thgecond, each component image is passed through a spatial
higher DPI. Figure 2 shows that one can offset a decreasefifier that represents the spatial sensitivity of the human
DPI with an increase in number of graylevels to keepsisual system for that color component. Third, the filtered
perceived image quality constant. Similarly, one carmages are transformed into the CIE-XYZ format so that
decrease the number of graylevels if one increases DPI ag¢ghndard CIELAB color difference metrics can be
keep perceived image quality constant. In other wordssomputed.
grayscale and addressability map into a single dimension of One of the advantages of the S-CIELAB metric is that
perceived image quality. We turn now to consider a metri¢t is backwardly compatible with CIELAB in the sense that
that predicts image quality as a function of grayscale deptfor large uniform targets the S-CIELAB predictions are the
and addressability. same as the CIELAB predictions. For textured regions,
however, the two formulae make very different predictions.
Another advantage of S-CIELAB is that the units of the
metric already have special meaning in the engineering
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community. Color scientists and engineers are accustomed Figure 3 shows iso-quality contours for the test pattern
to reporting perceived color differences in unit\&f halftoned with different number of graylevels and different
We used the metric to make predictions about theddressability. Each curve in the figures plots the
visibility of halftone texture as a function of device combinations of grayscale and addressability that generate
addressability and number of graylevels. To compare theshe same S-CIELABAE values. Figure 3a shows
predictions with our empirical data, we used the sameneasurements using linear halftone level spacing and
halftoning method (error diffusion) and the same originaFigure 3b shows measurements using L*-spacing of
image. The results, shown in Figure 3, are predictions baséuhlftone levels. Together the curves support the conclusions
on a standard test pattern that we developed later. The tedt our empirical investigations of grayscale/addressability
pattern is an exponential grayscale ramp that spans tBadeoffs. When equated for the number of halftone levels,
degrees of visual angle [18]. We prefer the standard tet-spacing of the levels is predicted to have better image
pattern because it samples a wider range of grayscatpiality than linear-spacing. Halftone errors do not decrease
values. (The predictions are comparable to the predictioninearly with the increase of DPI or number of graylevels.
based on the original image.) Rather, as the halftone levels increase beyond 16, or dpi

_ _ increases beyond 800 dpi, the halftone quality improves
(A) linear spacing

120 very little [17].
900 12004
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900 0 Number of gray levels per point
720
600 Figure 4. Comparision of stimulus conditions that generate S-
288 1 0.12 CIELAB 4E values of 1.0 (see Figure 3) to stimulus conditions
T 330 that generated “threshold” and “suprathreshold” judgements.
0 260 Threshold judgements (denoted with “0”) refer to stimulus
210 conditions that were indiscriminable from the image rendered at
179 1200 dpi with 256 gragvels. Suprathreshold judgements
135 2 N . "
110 3. 095 (denoted with “+") refer to stimulus conditions that were always
90/ | \10 discriminable from the 1200 dpi, 256 grayel image. Again, the
72 arrow indicates the direction of increasing image quality.

2 4 6 1016254064101 255
Number of gray levels per point

_ . . . S-CIELAB, like CIELAB, predicts perceptual
Figure 3. Iso-quality contour plots for grayscale ramp image: v oqholds for detecting the difference between two retinal
Each curve represents the combinations of grayscale anfﬁ]

o ages and, in this case, the difference between a contone
addressability that generate the same S-CIELABvalue. The 4" haiftone grayscale image. Each curve in Figure 3
direction of the arrow indicates increasing image quality. (A) jonstes a particular threshold value. Figure 4 compares the
Grayscale ramp was halftoned using linear spacing of luminanc

) ) epredictions of the S-CIELAB metric to the empirical data
(LE) Grayscale ramp was halftoned with levetgially spaced in -\ cojlected in our experiments. The empirical data are

plotted as a function of the pixel addressability conditions

(bits/pixel and pixels/inch) and categorized into one of two
The predictions shown in Figure 3 are based on theategories: threshold and suprathreshold judgements.
assumption that a standard visual observer (modeled by tAdireshold judgements refer to conditions in which images
S-CIELAB metric) viewed the test pattern from a distancewere perceptually equivalent to the 1200 dpi, 8 bit (256
of 12 inches. We computed the S-CIELAB differenceslevels) grayscale image (1200 dpi with 4, 8 and 12 levels,
between the continuous grayscale ramp and differer800 dpi with 4, 8 and 12 levels and 300 dpi with 8 and 12
possible halftoned ramps. The halftoned ramps differed ifevels). Suprathreshold judgements refer to conditions in
addressability and grayscale. which subjects could always tell the difference between the
1200 dpi, 8 bit grayscale image and the halftoned image
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(300, 600 and 1200 dpi with 2 levels and 300 dpi with 47.
levels). The data are plotted in this way to illustrate the
following observation: S-CIELAB values of 1.0 separate the
threshold and suprathreshold stimulus conditions. When the
S-CIELAB difference metric was greater than 1.0, subjects
could always perceive the difference between a halftone ardd
contone image. In other words, halftone texture was visible
in images with S-CIELAB values greater than 1.0. When
the S-CIELAB difference metric was less than 1.0, subjects
could not perceive the difference between a halftone and
contone image. 10.

S-CIELAB makes predictions that are also consistent
with other experiments we have conducted on the visibility
of halftone texture in color images [17, 18]. For example11.
the metric predicts that the increase in image quality with
increasing grayscale depth is greater for black, magenta and.
cyan, in that order. S-CIELAB predicts that there is no
improvement in image quality with increasing the number
of levels for the yellow inks. These predictions arel3
consistent with our own observations and support the design
decisions we made for the HP Photosmart Printer.

14.
Conclusion
15.

This paper posed the question: What is the best way to
allocate bits to optimize photographic image quality? To
answer this question, we developed methods for simulating
the output of devices with different addressability andi6.
grayscale capabilities. We developed methods for
quantifying how people perceive the image quality of such
devices. And we developed metrics to predict these7.
subjective judgements. All three methods converged upon
the same answer: The mafficientway to generate high-
quality photographic images is to increase the number afs.
bits/pixel or graylevels/dot.
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