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Abstract from a predetermined shape and thus are not really capable
of representing correctly the late stages of the jet life.
A liquid jet issuing from a nozzle may break-up into The second approach to the jet break-up problem is the

small drops of a variety of sizes when it is subjected to everapproximation of the full Navier-Stokes equations by use of
minute disturbances due to the phenomenon of capillarya set of one dimensional jet equations which take into
instability. With the large number of parameters involved in account the characteristic features of the flow, notably the
the description of the jet instability, it should be of great jet slenderness as described by YariThe simplest
interest to solve the governing equations numerically.equations are those derived by $e@eglecting radial
Several attempts have been made in this direction and armertia and viscous effects. The spatial one-dimensional
still very active since a detailed numerical investigation of equations derived by Lee were solved by Tofpgsing a
the break-up of a viscous jet requires a very accuratenveighted residual method, in which a system of non-linear
numerical technique. The present work proposes one suchartial differential equations are reduced to a set of ordinary
technique capable of an efficient computation of the differential equations. Torpey limits his expansion to the
unknown free surface. It is the stream tube method whichtwo first Fourier modes and claims fair agreement with his
uses a transformation of the physical domain. Theexperimental results. We have shown elsewhthat this
governing equations are then solved by using anlevel of approximation can only be justified for low initial
optimisation algorithm. An expected advantage of theperturbations which is not the case of industrial
method is the easiness in introducing elaborate rheologicahpplication8. Moreover Eggers and Dupéhthave shown
constitutive equations in order to account for complex fluid that inviscid models may become inconsistent much longer
behaviour. In this paper, we will give the basic features ofbefore break-up occurs.
the stream tube method in the context of an unsteady jet Finally the last modelling approach to the problem of
flow and present the procedures allowing to obtain jet instability is the direct numerical solution of the Navier-
streamlines and kinematic quantities on the jet instability Stokes equations. The first attempt was done by Shokoohi
problem. who used a vorticity-stream function formulation to track
the fluid surface. The computations were limited to low
Introduction Reynolds numbers by numerical stability constraints and
also by computer time requirements. Mansour and
The problem of modelling the break-up of liquid jets is Lundgrer? used a boundary integral method to study the
a fairly old one. The first mathematical treatment is due toinstability of an inviscid jet. This method is very attractive
Rayleigh using linear instability theory, where he since it involves only information about the surface of the
considered an infinite jet, and examined the temporalfluid. Although being quite accurate boundary integral
behaviour of an axially periodical disturbance. This is not methods neglect either viscous or inertial forces, both of
strictly the problem issuing from a nozzle, which was first which become important asymptotically as emphasized by
considered by Keller et 4l Satellite formation is not Eggerd3. Moreover for these methods, both the surface
predicted by the linear theory. Following this linear tracking and the flow computations are quite complicated
analysis there have been essentially three approaches to tipeoblems which have to be coupled appropriately. Very
problem of jet instability. The differences between theserecently Ashgriz and Mashay¥k proposed a temporal
approaches consist in the accuracy by which the geometranalysis of the capillary jet break-up problem based on a
and fluid mechanics of the problem are taken into account. Galerkin finite-element method with penalty function
First is the non-linear perturbation analysis of formulations in order to solve the continuity, momentum
Rayleigh's problem which results in analytical solutions. and conservation equations. The free surface of the jet
Analyses that fall in this category include that of Ytiand which is a priori unknown is determined using a special
Chaudhary and Redekoppn which the viscosity was method developed by the authrsThis work is probably
neglected. Moreover perturbation analyses assume that théhe most extensive study of jet break-up to date.
free surface shape, while unknown deviates only slightly
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In this paper, our aim is to propose a robust numerical For the axisymmetric flow which is under study, the
method which is able to deal with the highly non-linear velocity vector can be written as:
problem of spatial jet instability which may lead to rather N N N
intricate free surface shapes. This method should also be V = u(r,zt)er +w(r,zt)e, A3)
versatile enough to model accurately different initial and/or
boundary conditions such as non-sinusoidal perturbdfions using cylindrical co-ordinates. Following Clerméhtwe

can write the stream function at the section of reference as:
Features of the Stream Tube Method

r
The basic elements of the stream tube method have (/’(r’zb ,t): _.[fw(é’zb ’t) dé (4)
been discussed in an exhaustive manner elseWhamd 0

therefore only the main features necessary for the  The reference sectiom,allows to construct a mapped
understanding of the results given hereinafter will be gyp-domain for which the maximum radius Rb

presented in this sub-section. _ corresponding to that of the free surface#er z,. Let us
In the case of an axisymmetric problem, the streampgw take

tube method defines a transformation function f which

allows a physical domain D to be mapped into a simpler ¢*(Rt) — —go(l’ z, t) (5)
domain D* where the streamlines are parallel straight lines. ’ oY

This function f is an unknown of the problem to be solved The derivation operators which come from the

in the new domain which is geometrically much simpler asequations defining the function f can be written:
shown below in figure 1. s 1 s
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Following the same transformation, the velocities are

of the form:
PHYSICAL DOMAIN D Mapped ,
Streamline U= fz i *(R t)) 8
(,ZL ffp ORT ®
l 5 F3
w=———"J{¢"(Rt

MAPPED DOMAIN D
In order to simplify let us take:

Figure 1. Representation of physical and mapped domains S

7'RO=2='RYD)
In the case of the jet, as also shown in figure 1, the

domain is sub-divided into sub-domains Di involving a from where we obtain:
one-to-one local transformation for obtaining the mapped '

sub-domain Di*. For every sub-domain, we have: f -
Z %
r=f(R,Z) @ U=—>=-¢ (R,t) 1)
f fq
z=27(r, 2)e Di (R, Z) e Di* 2
A=8F,2/5R, D= =0 foralli I
o . . . w=—-+¢"(Rt) (12)
where f_ is the Jacobian of the function,.flt will be f fR

noticed that there is necessity to consider boundary

conditions between two different sub-domains. In order to From the velocities at the sections of reference and the
formulate the basic equations of the stream tube analysismapping function, it is possible to compute the velocities in

reference sections are required for each sub-domain. In thall the sub-domains of the jet as shown in figure 2. In this
problem under consideration, the reference section is that ofigure we have considered the radial velocity to be

maximum radius i.e. the swell section. negligible.
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Figure 2. Map of the velocity field in a sub-domain

Within the context of the stream-tube method, it is

necessary to compute the mapping function f from the

mapped domain D* i.e. the domain of computation. Let us

Copyright 1998, IS&T

The equilibrium equations in cylindrical co-ordinates
can be written as:
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assume that the axial velocity is constant in every reference

cross-section as shown in figure 2. This assumption leads

to:

OW_ 0 vzvt
or

Using this relationship, we obtain the following partial
differential equation for the mapping function f.

f fF;—R[fF'ﬁf fé{l _0

This partial differential equation with unknown f is
true for every sub-domain and for all times. Moreover, on
the axis of the jet we have the relationship f = 0.

We propose to choose a polynomial approximation of
degree three for f in the following form:

(13)

(14)

vz (Rt)=ay(Z,t)Rra,(Z,H)R? +a5(Z )R +... (15)

Theo, are associated to one given section for each time

t. They represent a subset of the unknowns of the problem.
Governing Equations of the Problem

As shown elsewhefethere are at least two possible

methods to perturb the jet. Indeed the disturbance can be in

the form of an electrohydrodynamic stimulation (radius

perturbation) or a piezoelectric excitation which leads to a

Now we can apply the derivation operators on each
component of the extra-stress tensor with special attention
to the points on the free surface. In the case of an inviscid
fluid, on the free surface the pressure is not an unknown
since it is defined by the following relationship:

1 1
urf = T(_ + _]
h T

where T is the surface tension coefficient apdnd  are
the usual radii taken into account for the calculation of the
surface tensidh

By applying the derivation operator op and rwe
obtain:

P

[ (19)

T
Psurt = ?

Finally to summarise, the equilibrium equations on the
free surface are:

(20)

T ) 1 §Trr I5Trz fz §Trz ITrr_THH -0
f2 fg SR 6Z fg oR  f 1)
l 5TFZ | 5TZZ fzI 5TZZ ITrz —
fr OR 6Z fg 6R f
and for the points within the jet we have:
_16P 16T, 6Ty £,0T; Ti—Top
foOR fn OR 6Z f, 6R  f (22)
fz 6P _6P 10T, 0Ty ;0T Tz
foOR 0Z fn 6R 6Z fy 6R f

velocity pulsation. In this study, we consider a disturbance

using the latter technique which gives an excitation of the

following form:
w(r,Z' t)=w,sin (ot+¢) (16)

wherew,is the initial amplitude and the phase shift.
The velocity profile at the nozzle exit is taken to be

For a viscous jet there is no difference between free
surface and interior points.

As stated earlier in the numerical features of the stream
tube method, the jet is partitioned into sub-domains which
leads to define two compatibility equations between the
sub-domains with respect to continuity on the axial velocity

uniform but any other type of profile can be envisaged. Inand the mapping function.

this investigation body forces and inertial forces are
ignored.

wWR L, )=W(R+1'ZCM)
f(R.Z¢ )= (R Z¢,)

(23)
(24)
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Where(Rch JeD's and (Ri 1 Zc. )eDin At each mesh point the pressure is unknown, and at
‘ B i every cross section, the three unknowns of the analytical

The governing equations concern the interface pressurggrm’ of the mapping function f are to be considered (see
and can be written as: equation 15). On the interior points, we have to write the

P equilibrium equations, while for the boundary points, we
t=on (a) have also to take into account the interface pressure.
— 1 1 Finally, we are left with the sub-domain boundary
‘t‘:T[_+R_ (b) (25) conditions (continuity of axial velocity and mapping
. R R function). This leads to an over-determined system of
t//n (C) equations which we solve using the Levenberg-Marquardt
optimisation algorithm. For our preliminary numerical
The components of the normal vector are: experiments, we have chosen to work with about 500 mesh

~ L L 1 f, points. The numerical code is implemented on a Pentium II
N=NrE+NzE; = — &R~ —€; (26)  micro-computer with double precision variables. At this
\/1+(fz) \/1+<fz) time, the numerical simulations are carried out on the low

with (a) and (b) we obtain: initial perturbation regimf&for a fluid of viscosity similar to
that of an ink and for Reynolds and Weber numbers equal
8 2 - 2 V72 to that found in industrial ink-jet printing. Typical runs are
((( P+T”)n'+T'ZnZ) +(T'Zn'+ P+TZZ)nZ) )}/ of the order of 6 hours CPU time. As expected we find
52r results close to linear perturbation analyses as given by
> (27) Chaudhary and RedekdppThis helps to show that the
- Os 1 oz controlling parameters have been appropriately taken into
2\ st ) account.
(271 [+
52 oz Concluding Remarks
And finally with (c) we have: In this paper, a numerical method based on the stream
tube analysis has been developed to investigate the break-
v T2y +(_P+Tzz z up of an unsteady Newtonian jet. Some distinguishing
'z = _ (28) features of the stream tube formulation, mainly the
Trznz+( P+Trr)]z transformation of streamlines into parallel lines in the

mapped domain are shown to be of help in characterising
the intricate free surface shapes in the jet break-up problem.
The possibility of computing stresses and velocity fields
within the jet by use of an adaptative mesh is also to be
underlined.

Although the method presented in this paper is applied
to Newtonian fluids, the elements given in this paper may
(pe readily generalised for other fluids with complicated
éheological behaviour.

This work is only in its initial stages since we have
only considered the low initial perturbation regime. Results
n the high initial perturbation regime are needed for full
alidation of the numerical simulations. We expect also in
e near future to extend this method to the problem of drop
n demand printing.

With this equation the mathematical formulation of the
jet instability problem is completed.

Numerical Procedure

Mesh generation for the problem under study is an
highly non-trivial part of the overall solution procedure. It
is important to generate the most efficient mesh so as t
reduce the computing time. Since we are considering th
spatial instability it is necessary to mesh the whole jet.
Moreover we are in the case of highly distorted domains
where moving boundaries are involved and these domaing
experience successive evolutions as time advances. In th
present work, we consider an adaptative mesh i.e. there ar
few points in the early stages of the jet and their number®
increases as time advances. The jet becomes more and more

distorted in the last stages as shown in figure 3. References
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