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Abstract
This paper introduces an innovative blind in-painting tech-

nique designed for image quality enhancement and noise re-
moval. Employing Monte-Carlo simulations, the proposed
method approximates the optimal mask necessary for automatic
image in-painting. This involves the progressive construction of
a noise removal mask, initially sampled randomly from a bino-
mial distribution. A confidence map is iteratively generated, pro-
viding a pixel-wise indicator map that discerns whether a par-
ticular pixel resides within the dataset domain. Notably, the
proposed method eliminates the manual creation of an image
mask to eradicate noise, a process prone to additional time over-
head, especially when noise is dispersed across the entire image.
Furthermore, the proposed method simplifies the determination
of pixels involved in the in-painting process, excluding normal
pixels and thereby preserving the integrity of the original im-
age content. Computer simulations demonstrate the efficacy of
this method in removing various types of noise, including brush
painting and random salt and pepper noise. The proposed tech-
nique successfully restores similarity between the original and
normalized datasets, yielding a Binary Cross Entropy (BCE) of
0.69 and a Peak-Signal-to-Noise-Ratio (PSNR) of 20.069. With
its versatile applications, this method proves beneficial in diverse
industry and medical contexts.

Introduction
The challenge of image semantic restoration involves the

task of deriving a clean, original image from a corrupted ver-
sion. One approach to image restoration involves the use of
image in-painting techniques, which involve replacing pblack-
etermined image pixels with new content based on neighbor-
ing regions and the overall context of the image. Noteworthy
progress has been made in addressing the image in-painting prob-
lem [12, 22, 31, 34]. However, employing manual image in-
painting for the restoration of corrupted images presents its own
set of difficulties. Consider a scenario where an effective in-
painting method is available for the restoration of a corrupted
image. The manual selection of each individual pixel becomes
arduous and time-consuming when corrupted pixels are scatte-
black throughout the entire image. Additionally, human judg-
ment encounters challenges in determining the corruption status
of specific pixels. To illustrate, anomalous human faces pose a
difficulty in objectively distinguishing between normal and ab-
normal facial pixels, leading to varied recommendations from
different individuals.

Blind inpainting [3, 15] enables the automatic generation
of the mask necessary for the inpainting procedure. It can be
useful in many applications including image restoration, data re-
covery, and medical imaging. There has been limited progress
in this research field thus far. The proposed approaches leverage
deep learning techniques for image inpainting, presuming that
the pixels requiring inpainting are filled with constant values or
Gaussian noise. Such assumptions facilitate pixel identification.

However, for different types of contaminations, determining the
underlying probability distribution of the noise becomes chal-
lenging. A recent inpainting model, VCNet [24], employs Gen-
erative Adversarial Networks (GANs) to establish a two-phase
blind inpainting model. The initial phase utilizes a Convolu-
tional Neural Network (CNN) to estimate the mask, while the
second phase carries out the image inpainting process. Similar to
prior methods, VCNet assumes that image contamination could
originate from another dataset (another image), limiting the ef-
fectiveness of blind inpainting. To address these challenges, the
sole assumption made is to regard the input image as originat-
ing from a particular probability distribution, while any noisy
pixel contents are assumed to be drawn from an unspecified data
distribution. In this study, we propose a simulation-based ap-
proach for estimating a mask that eliminates undesiblack areas
in images. Undesirable areas are defined based on substantial
differences observed after applying image inpainting to the input
image using a proficiently trained inpainting model.

Figure 1. Some examples demonstrating the effectiveness of the proposed

method for noisy images.

This paper introduces several key contributions:

• A pioneering blind inpainting model that utilizes a high-
performing inpainting model to identify potential locations
of out-of-distribution pixels.

• A Monte-Carlo simulation-based approach to generate a
confidence heatmap on the input image, revealing the like-
lihood of a given pixel being normal or anomalous.

• The development of a thresholding technique to transform
the confidence heatmap into a mask suitable for the image
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inpainting process.

Related Work
Inpainting methods utilize internal/local image information

and external (geometrical) rules to replace missing pixel blobs of
images with new content [2, 5, 10, 11]. Regarding automatic in-
painting, current research focuses on images corrupted by simple
and small data structures such as text or thin strokes with constant
intensity [3, 15]. For these scenarios, data interpolation from lo-
cal regions is even possible at least for simple inpainting cases. In
the case of substantial gaps or holes in images, recent approaches
have successfully employed generative models [1, 16, 32, 23] for
image inpainting. These generative models, which may be con-
ditional, produce commendable results by leveraging image con-
text and adhering to label constraints [29, 27, 26, 33].

Various inpainting approaches have been proposed, show-
casing diverse strategies. For instance, Pathak et al. [18] con-
structed and trained an encoder-decoder model using reconstruc-
tion and adversarial losses. Iizuka et al. [8] utilized multi-
discriminators for both global and local image regions, enhanc-
ing inpainting quality. Coarse-to-fine [29, 27] or multi-branch
[25] networks were employed to achieve improved inpainting
quality. Yang et al. [28] implemented an optimization-based ap-
proach, incorporating texture, semantics, and smoothness details
in the loss function to enhance image inpainting.

Attention networks [28] were utilized for inpainting by
learning how to incorporate best-fit background information into
the foreground, while Wang et al. [25] introduced an implicit di-
versified Markov random fields (ID-MRF) loss during training to
facilitate best-fit searches without extensive computation.

Additional enhancements consideblack image structures
such as edges [17] and object-level representations [27] in a two-
stage operation. Zheng et al. [33] introduced pluralistic inpaint-
ing results, and Sagong et al. [20] designed more efficient image
generation methods. Alternative research directions exploblack
convolution variants, like partial and gated convolutions, for ob-
taining highly detailed inpainting results directly [14, 30]. Some
studies investigated masking operations applied to image repre-
sentations beyond the input image. Moreover, automatic inpaint-
ing tasks, such as raindrop removal [19], relied on prior assump-
tions and feature statistics to detect whether a pixel is clean or
requires inpainting.

Methods
Consider an original human face image with facial defor-

mity, denoted as xorg ∈ Nn×m×c, where n, m, and c represent its
height, width, and the number of color channels, respectively.
The primary research goal is to derive an optimal mask M∗ that
highlights potential out-of-distribution pixels. This mask is then
utilized to generate a normalized version, xnorm, from the original
image xorg. Let G represent a reliable inpainting method, imply-
ing that for a given image pixel xorg,i, j , if the pixel is normal, its
brightness level is expected to be restoblack to its original value
if tested for inpainting. This assumption hinges on the premise
that the majority of image pixels are normal. If the inputs to G
are xorg and mask M, then the output xnorm is expressed as:

xnorm = G(xorg,M). (1)

The overall workflow of operations is shown in Figure 2.

Initial Mask Estimation
Given that M is unknown, the proposed algorithm itera-

tively estimates the optimal mask M∗ by starting from an initial

Algorithm 1 Automatic Mask Generation. Input: Face image
xorg, MAT in-painting model G, in-painting probability pr, noise
threshold t(= 1), r = 1.0 and in-painting iterations L. Output:
Normalized image xnorm and optimal mask M∗.

M0
mother← 0 # estimate the initial mask

Dc← 0
For l = 1, . . . ,L

Mrnd ← Bin(1, pr)n×m

Ml
mother←Ml−1

mother ∪Mrnd

xl
norm← G(xorg,Ml

mother)

Dc← Dc +((xorg− xl
norm)⊙ (xorg− xl

norm))
◦2

For each xorg,i, j in xorg
if |xorg,i, j− xl

norm,i, j|< t then
Ml

mother,i, j← 0
End For

End For
H← hist(Dc) # thresholding the confidence map
σ ← std(H)
topt ← argmax(H)+ rσ

For each Dc,i, j in Dc
if Dc,i, j < topt then
ML

mother,i, j← 0
else

ML
mother,i, j← 1

End For
M∗←ML

mother
x∗norm← G(xorg,M∗)
return M∗, x∗norm

random mask Mrnd sampled from a binomial distribution, and
employs it to inpaint xorg. Subsequently, the resulting xl

norm is
compablack to xorg through pixel-wise subtraction. If the differ-
ence for a pixel is significant, it indicates an out-of-distribution
pixel requiring replacement. The set of pixel locations need-
ing replacement in xorg is stoblack in a distinct ”mother mask”
Mmother using the union operation. Subsequently, a new random
mask is generated and combined with Mmother to identify poten-
tial pixels for replacement. This sequence of steps repeats for
a total of L iterations. Concurrently with estimating Mmother, a
”cumulative difference map” Dc is computed by aggregating the
difference map D between xorg and xl

norm at each iteration. The
cumulative difference map serves to construct a confidence map
indicating the locations of pixels that require replacement.

Thresholding the Cumulative Difference Map
Once Mmother has been acquiblack, the subsequent phase

involves enhancing it through the utilization of the cumulative
difference map Dc. This map represents the variation level ex-
perienced by each pixel throughout the L inpainting iterations.
Converting Dc into a final mask involves assigning a value of 1
to pixels exhibiting significant variation, signifying the necessity
for inpainting. Pixels with minimal variation in Dc are assigned a
value of 0, indicating that they are normal. To establish a thresh-
old for the division of pixels into two groups, a histogram of pixel
variation (H) is generated. The mean and standard deviation (σ )
of the variation values are calculated, serving to determine the
optimal threshold as follows:

topt = argmax(H)+ rσ . (2)

Figure 3 displays a histogram plot H belonging to a facial image
example. In the final step, the new mask Mmother is applied to in-
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Figure 2. Flowchart of the proposed blind inpainting operations.

paint xorg in a single forward pass, resulting in the optimal xnorm
with noise fully eliminated. The process for estimating the mask
M is delineated in Algorithm 1. For this algorithm to offer the
best performance, a good inpainting method has to be utilized.
A good inpainting method is assumed to keep normal pixels un-
changed.

Figure 3. The histogram of the confidence map (Dc) shows that the cu-

mulative variation is concentrated in a specific and limited mid-range (500-

2500). Most of the pixels experience variations with low confidence, mean-

ing that these pixels vary during most of the processing iterations. There-

fore, these pixels should not be inpainted. Only pixels with high inpainting

confidence ( > 2500) should be inpainted.

Experiments
Two datasets were used to evaluate the performance of the

proposed method. The first dataset consists of 150 facial images
from the CelebA-HQ dataset. The second dataset contains 150
images of natural scenes obtained from the Places2 dataset. Both
datasets were contaminated with a set of 150 masks containing
synthetic random brush strokes with varying thicknesses (4 and
8 pixels). The proposed algorithm is tested to remove these ran-
dom strokes from the original image xorg, and the result of re-
moval is stoblack in xnorm along with its final estimated mask M.
The Mask Aware Transformer (MAT) [12] inpainting model was

utilized in the proposed framework during the inpainting step in
Algorithm 1. A network pretrained on the FFHQ dataset was em-
ployed to estimate the mask for the faces dataset, while another
pretrained network on the Places2 dataset was utilized for the
Places images. MAT showed a good inpainting performance on
the FFHQ and Places2 datasets. The number of inpainting itera-
tions L was set to be 50 to ensure most pixel combinations were
tested for inpainting. To test for the automatic inpainting per-
formance, the Ground Truth (GT) masks are compablack with
the estimated ones for both datasets using the Binary Cross En-
tropy (BCE). Also, the Peak-Signal-to-Noise-Ratio (PSNR) and
Structural Similarity Index (SSIM) between {xorg} and {xnorm}
are calculated to evaluate the quality of the inpainted images and
compablack to the quality of the GT datasets. Different values of
success probability pr and inpainting threshold were also tested
to obtain the best combination. The best-performing combina-
tion was used to compare the Auto-MAT against VCNet. An
evaluation dataset is only requiblack to test if the parameters in
the proposed method generalize well to eliminate the noise from
the samples. This proves valuable in situations where abnormal
samples are scarce within a dataset.

Results and Discussion
To compare the proposed method with other competing

blind inpainting models, Table 1 shows the BCE, SSIM,
and PSNR of the proposed algorithm and for VCNet on the
masked FFHQ and Places2 datasets. The proposed algorithm
outperforms VCNet in terms of mask estimation and image
quality in both datasets. The results of the Auto-MAT show that
it can perform well in both the mask estimation as well as the
inpainting phases. However, VCNet did not succeed well in
performing the blind inpainting on the images under analysis.
More visual results are shown in Figure 4. VCNet’s design
may not generalize to different pixel contaminations, relying on
specific assumptions about image noise during training.

Table 2 shows the blind inpainting performance of the
masked FFHQ dataset using the BCE, SSIM, and PSNR met-
rics, under different combinations of hyperparameters. The re-
sults show that the best combination is when using the threshold
t = 8 and pr = 0.9. This combination archives a BCE, SSIM,
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Figure 4. Some examples to visually compare the performance of the proposed method and VCNet. As can be seen, Auto-MAT can restore the contamination

area and replace it with normal pixel intensities using the context of the remaining image.

Table 1: PSNR, SSIM, and BCE between the ground truth
and output images and masks for the proposed method and
VCNet.

Method FFHQ
PSNR ↑ SSIM ↑ BCE↓

VCNet 10.490 0.2426 0.7152
Auto-MAT 18.054 0.8679 0.6889

Places2
PSNR ↑ SSIM↑ BCE↓

VCNet 14.9524 0.2500 0.8321
Auto-MAT 21.6945 0.9314 0.7184

Table 2: Assessment for different combinations of pr and t
of the proposed algorithm applied on the FFHQ dataset. The
best combinations are highlighted in bold numbers.

t PSNR↑ SSIM↑ BCE ↓
2 16.458 0.8693 0.6931

pr = 0.7 4 17.080 0.8633 0.7006
8 19.084 0.8640 0.6959
2 16.526 0.8689 0.6930

pr = 0.8 4 17.7839 0.8651 0.6923
8 20.069 0.8707 0.6875
2 16.800 0.8684 0.6906

pr = 0.9 4 18.054 0.8679 0.6889
8 17.747 0.8690 0.6873

and PSNR of 0.69, 0.87, and 17.75, respectively. Figure 1 illus-
trates several examples of progressively eliminating undesiblack
content from the input images utilizing the suggested method.

Raising the threshold t will increase the rejection inpainting
probability. This forces the proposed method to keep most of the
image unchanged as possible, when fixing the number of inpaint-
ing iterations L. However, raising the value of L enhances the
frequency of testing a specific pixel for inpainting, thereby ele-
vating the likelihood of inducing a pixel alteration. Additionally,
the inpainting probability pr plays a direct role in determining
the likelihood of testing mask pixels for inpainting, influencing
the detection of out-of-distribution pixels across various sizes. pr
determines the number of random pixels tested for inpainting at
each inpainting iteration. If pr is high, less image context will be
used to inpaint the missing regions, which may cause the normal

content to be lost. Conversely, a small pr results in the algorithm
taking longer to test all possible pixel combinations. These three
hyperparameters are interconnected, requiring a delicate balance
to achieve accurate mask estimation while retaining the major-
ity of normal pixels unchanged, thereby preserving the original
image content to the greatest extent possible.

Inadvertently removing normal pixels depends on factors
like the effectiveness of the inpainting method. Hence, the confi-
dence map (Dc) is introduced to distinguish normal from abrupt
pixels, blackucing the chance of removing normal ones mistak-
enly. The proposed method takes about 5 seconds for 50 inpaint-
ing iterations using a modern GPU. In contrast, VCNet com-
pletes a single forward pass in approximately 100ms. However,
our method outperforms VCNet despite its quicker execution.
Utilizing advanced techniques to optimize L, pr, and t values
could further enhance processing efficiency.

Conclusions
This study introduces an automated inpainting method that

leverages high-performing inpainting models, eliminating the
need for manual mask creation—an often challenging task in
practical scenarios. The proposed method successfully estimated
and eliminated brush strokes in both facial images and natural
scenes, replacing these pixels with color intensities that appear
normal. The approach employed pixel-wise subtraction to iden-
tify varying pixels, enhancing confidence in optimal mask esti-
mation. In alternative experiments, one could explore other deep
learning-based comparison methods for a more precise determi-
nation of semantically alteblack pixels during the algorithm’s
progression. Additionally, varying pixel sizes could be intro-
duced to identify different sizes of image corruption. More ex-
periments can be conducted to evaluate and refine the proposed
method and to ensure the method’s robustness in eliminating
other types of image noise. This work can be applied to different
anomaly detection applications in industry and medicine when
the number of anomalous samples is very small compablack to
the number of normal samples [7, 6].
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