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Abstract 
The visual system decomposes light entering the eye into an 

achromatic and a chromatic signal. Knowing whether this 

decomposition is additive or multiplicative is still a current 

research question. Luminance has been found to be additive when 

measured physiologically but multiplicative in appearance. 

Demosaicing multispectral images (shoot through a color or 

spectral filter array), show how additive decomposition is a linear 

solution to the inverse problem of mosaicing. But for reflectance 

estimation, a multiplicative decomposition would be preferred. 

Both decomposition imply two different geometries that share 

their vector spaces but not their metric. 

Introduction 
Luminance is the value assigned to a light by multiplying its 

spectral power distribution (expressed as a real function of 

wavelength) by the spectral efficiency function of the eye, 𝑉(𝜆) 
and integrating over wavelength. Luminance estimation is linear 

because of the integration. The luminance of the composition of 

two lights is the sum of their luminance. But, the sensation of 

luminous intensity (sometime called brightness) is rather 

expressed by a log function of the energy. This log function is the 

support for the so-called Weber-Fechner’s law [1] applying in 

light intensity [2].   

Whether luminance is more appropriate to describe the 

physiology of the eye as measured by heterochromatic flicker 

photometry and the luminous intensity the sensation given by a 

light stimulus, is likely. From the retina, visual signal encoded by 

the cone-photoreceptors is known to project quite directly to the 

brain visual area (V1, V2, V4) but also to the motion regions of 

the brain (MT/V5) [3]. The signal carries by this so-called 

magnocellular pathway is known as achromatic. This is what 

made the visual system so efficient for motion perception. But 

there is no color variation inside, at least for a fixed condition of 

observation. If there exists a brain function that is fixed for fixed 

condition of observation, it must be estimated easily. This is what 

have been done with photometry measurement by hetero-

chromatic flicker photometry [4, 5]. The average result of the 

experiment is normalized by the CIE as the spectral efficiency 

function 𝑉(𝜆). It is a fixed function of wavelength because it is 

supposed fixed for fixed conditions.  

How this function behaves when the condition change is still 

a not solved problem. There are evidences that the function 

change with overall level of light, from dim light to dazzling light. 

Also spectral efficiency of the eye is a different function in 

mesopic vision [6]. But the way this function change and if the 

change enables the so-called color constancy phenomenon is still 

under debate [7]. Here also, the function should be fixed for fixed 

condition of observation but the way the function change, adapt 

to the chromatic environment, is guided by a multiplicative 

decomposition [8].  

Both cases can be glued together if one considers a fourth 

dimension intensity. Suppose the visual system is able to encode 

three-color mechanisms plus an intensity mechanism. Intensity is 

not a fourth independent variable because it depends on the three 

others. But it can correspond to different functions depending (1) 

on the light level (2) on the considered physiological pathway (3) 

on the chromatic adaptation state of the observer. The three 

mechanisms are the LMS fundamental that represents the spectral 

rate of photon absorbed by a cone’s cell [9]. The intensity is a 

relative measure of the strength of the light by applying a 

sensitivity function (by point-wise spectral multiplication and 

integration) onto the spectral power distribution of a light. Using 

then the rules of projective geometry [10 - 13] these two spaces 

(additive and multiplicative) may lies. 

Color space 
Let suppose a vector space of dimension three called color 

vision space. To any vector corresponds a spectral efficiency 

function, that we consider present in the visual system.  The three 

absorption spectra of the cone-photoreceptors 𝜑𝑖, 𝑖 = 1. .3 form a

basis for the color vision space. On this basis one can construct a 

coordinate system in which any light stimuli correspond to a 

point. The coordinate of this point is given by the scalar product 

between the spectral efficiency function and the spectral power 

distribution of the light stimulus (which is again the integral of the 

point-wise product of the two functions). This writes: 

𝑐 = ⟨𝜑|𝑐⟩ = [

𝑐1
𝑐2

𝑐3

] =

[

∫𝜑1(𝜆)𝑐(𝜆)𝑑𝜆

∫𝜑2(𝜆)𝑐(𝜆)𝑑𝜆

∫𝜑3(𝜆)𝑐(𝜆)𝑑𝜆
]

Where 𝑐 is the coordinates of the color having 𝑐(𝜆) as a 

spectrum. Function 𝜑𝑖(𝜆) is the ith spectral efficiency function for

the three color mechanisms. 

Additive decomposition 
On this color vision space, the visual system operates a 

decomposition between the intensity and the color. This 

decomposition allows for perceiving a constant hue and saturation 

from object’s reflectance despite a large variation of intensity 

along the object’s surface. Suppose the decomposition is driven 

by a measure of intensity that is the average of coordinates of the 

color vector. Called 𝑣 = [1 1 1]𝑡/3 the luminosity vector the

decomposition write: 

𝐿 = 𝑣𝑡𝑐,

𝑐 = ℒ + 𝒞 = 𝐿𝑣 + (𝑐 − 𝐿𝑣) =
1

3
[
𝐿
𝐿
𝐿
] + [

𝑐1 − 𝐿/3
𝑐2 − 𝐿/3
𝑐3 − 𝐿/3

]  

=
1

3
([

𝐿
𝐿
𝐿
] + [

2𝑐1 − 𝑐2 − 𝑐3

−𝑐1 + 2𝑐2 − 𝑐3

−𝑐1 − 𝑐2 + 2𝑐3

])  

This decomposition is often called luminance-chrominance 

decomposition and was largely used for the development of color 

television. As shown on Figure 1 this decomposition can be 

interpreted as a cutting of the three dimensional vector space into 

parallel planes. Notice that if another vector 𝑣 is chosen the 

decomposition is still possible. For Figure 1 we choose the vector 

𝑣 equal to 𝑉𝜆 corresponding to the coordinate of the spectral

efficiency function 𝑉(𝜆) in the coordinate system of a particular 

display. Each plane is the surface for which 𝐿 is constant. All the 
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light stimulus that have same luminance are confined into a plane 

orthogonal to 𝑣 at a given level 𝐿. 

Figure 1. A color space such as the color cube produce by a computer 

display can be decomposed into luminance ℒ and chrominance 𝒞 vectors. 

Here is shown additive decomposition with the vector 𝑉𝜆 corresponding to the 

spectral efficiency function 𝑉(𝜆) represented in a RGB cube of a particular 

display. The locus of light stimuli that share the same luminance as 𝑐 are 

located in the plane orthogonal to 𝑉𝜆 passing through 𝑐. 

 

Surprisingly this decomposition corresponds to the 

luminance and chrominance signals implied in the frequency 

spectrum of a mosaic image (raw camera image sampled through 

a color /spectral filter array), allowing for a frequency selection 

demosaicing using linear convolution filters [14]. A 

generalization for a higher dimensional vector space including as 

well a local neighborhood of the mosaic and using the minimum 

square error for learning the linear solution over a database, shows 

a level of performance comparable to more complicated and time 

consuming methods [15,16]. In all these developments the 

principle of additivity between luminance and chrominance is 

respected [17].  

 

Multiplicative decomposition 
In the color vision space, only an opened positive convex 

cone pointing to zero contains physical light. Any spectral 

distribution can be decomposed on the basis of Dirac’s delta 

distribution [18]. The locus of the delta distribution in the color 

vision space, called spectrum locus, forms the limit of the cone, 

its envelop [8]. It was found that the spectrum locus; measured on 

observers by color matching experiment using mono-chromatic 

lights as Dirac 𝛿; made a circular shape like a cone cut by the 

purple plane. The locus of monochromatic lights is a path indexed 

with variable 𝑡, and writes:  

ℓ(𝑡)  =

[
 
 
 
 
 ∫𝜑1(𝑡)𝛿(𝑡)𝑑𝑡

∫𝜑2(𝑡)𝛿(𝑡)𝑑𝑡

∫𝜑3(𝑡)𝛿(𝑡)𝑑𝑡
]
 
 
 
 
 

 = [

𝜑1(𝑡)
𝜑2(𝑡)
𝜑3(𝑡)

] 

Thus the shape of the spectral efficiency functions of the 

cone-photoreceptors fundamental determined the spectrum locus 

in the vector space. Because those function are not triangular, the 

spectrum locus is not a triangle. Rather a circular shape is 

observed. 

The circular shape corresponds to a cone (here considered 

perfectly circular) and the equation of its envelop 𝛿𝐶 is formed by 

the isotope vectors of a quadratic form: 

𝛿𝐶 = {𝑥 ∈ ℝ3 , 𝑥𝑡𝒥1𝑥 = 0} with 

𝒥1  =  
1

2
[
0 1 1
1 0 1
1 1 0

] 

To express the multiplicative decomposition one need to 

defined a change of variable. This change of variable is made such 

that one axis in the new system is collinear to the sum of the three 

primaries axis. Otherwise said collinear to the vector 𝑣 defined 

above.  The matrix of passage 𝑃 is also normed to 1, 𝑃−1 = 𝑃𝑡. 

The change of variable writes: 

𝑦 =  𝑃𝑥 with 

𝑃 =
1

√3
[
−1/√2 √2 −1/√2

−√6/2 0 √6/2
1 1 1

] 

 

In this new coordinate system 𝑦, the envelop of the cone 

becomes: 

𝑦𝑡𝒥𝑦 = 0 with 

𝒥 = 𝑃𝒥1𝑃
𝑡 =

1

2
[
−1 0 0
0 −1 0
0 0 2

] 

In the new coordinate system y, 𝒥 is a diagonal matrix of 

Minkowski’s kind. The quadratic form can be used to define a 

norm for vectors in the vector space, ||𝑦||  =  √𝑦𝑡 𝒥 𝑦. If one 

associates this norm with the intensity of the light stimulus, then 

the iso-intensity surface becomes the hyperboloid of equation 

𝑦𝑡  𝒥 𝑦 = 𝑘2 rather than a plane. By consequence, the intensity of 

a light stimulus is given by the level 𝑘 of the hyperboloid that 

passes through the corresponding point (Figure 2).    

Let consider the change of variable: 

𝑘 = √𝑐𝑡𝒥𝑐 

𝜉 = tan−1 𝑐2/𝑐1 

𝑠 = tanh−1(𝑐1
2 + 𝑐2

2)1/2 /(√2𝑐3) 

Then the coordinate of the color point can be expressed as: 

𝑐 = 𝑘 [
√2cos2𝜋𝜉 sinh𝑠

√2 sin 2𝜋𝜉 sinh 𝑠
cosh𝑠

] 

Figure 2. Multiplicative decomposition of the color space. The point 𝑥 

corresponds to a light stimulus can be decomposed as a vertical vector ℒ 

from the origin to the affix 𝑘 plus a curved vector 𝒞 along the hyperboloid 𝐻𝑘 

of level 𝑘 passing through 𝑥. Once 𝑘 is known, the saturability 𝑠 and hue 𝜉 

can be computed in the unitary hyperboloid 𝐻1.  

 

Notice that the three variable 𝑘, 𝑠 and 𝜉 have physiological 

meaning. 𝑘 is the perceived intensity that may correspond to 

brightness compared to luminance 𝐿 expressed with the vector 

𝑉(𝜆) or to lightness that is 𝐿1/3.  𝑠 ∈ [0, 1] is the saturability, the 

arc tangent hyperbolic of the saturation and 𝜉 ∈ [−1/2,1/2] is 
the hue.  

This formulation allows a multiplicative decomposition of 

the color space. Any point 𝑐 corresponding to a color stimulus 

writes 𝑐 =  𝑘𝐻1(𝑠, 𝜉) where 𝑘 is the hyperbolic norm of the light 

stimulus, and 𝑠 and 𝜉 the cylindrical coordinates of the point 

projected onto the unitary hyperboloid 𝐻1. Given a particular 

illuminant as a single light source, and placing the corresponding 

vector as the axis of symmetry of the cone allows to obtain the 

reflectance factor of objects as 𝑘 and the reflectance function 

parametrized by the hue 𝜉 and saturability 𝑠. This decomposition 

would certainly participate to the color constancy phenomenon if 
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one considers that the axis of symmetry of the cone is align with 

the illuminant [8].  

Conclusion 
There is not a preferred geometry per se as said Poincaré 

[19]. Geometry is a tool for lying everyday objects expressed as 

point, line and surface with rules. Additive and multiplicative 

decomposition of color space can be lied with projective 

geometry. One supposes a fourth variable construct on the three 

others either with a linear 𝐿 =  𝑣𝑡𝑥 or a quadratic form 𝑘2  =
 𝑦𝑡𝒥𝑦. This variable then serves as a factor for projecting the 

points onto a unitary plane 𝐿 =  1 or a unitary hyperboloid 𝑘 =
1. As shown above the two models can be expressed together 

through a change of coordinate system. In Figure 3 the vectors χ𝑖 

are the basis vectors for the linear model. Those vectors 

correspond to the LMS color mechanism. For the hyperbolic 

model the basis is made with vectors 𝜓𝑖 with the relation 𝜓 = 𝑃𝜒.  
 

Figure 3. Additive and multiplicative models can by lied together in 

projective geometry. One defines an intensity measure on any point p, 

corresponding to a light stimulus, as a fourth variable either linear as 𝐿 = 𝑣𝑡𝑝 

or hyperbolic 𝑘 = √𝑝𝑡𝒥𝑝. The projection on the corresponding iso-intensity 

surface is given by dividing the three coordinates by this supplementary 

variable. 

 

In both linear and hyperbolic projective geometry, the rule 

of additive composition of light is respected. The spectrum of an 

additive composition of two light stimuli is the sum of their two 

spectra. Thus the vector corresponding to the mixing of two lights 

is the sum of the two vectors. A system of three primaries forms 

a double opposite pyramids with vertices composing a 

parallelepiped, the color cube (Figure 1). The projection on the 

isoluminance plane forms a triangle called color gamut.  With the 

construction shown in Figure 2, the position of the projection does 

not change with geometry. This is given by assigning the axis of 

symmetry of the hyperbolic model the same vector 𝑣 as in the 

linear model. For hyperbolic geometry the point m is considered 

belonging to the Klein disk 𝕂 rather than to the projection plane 

𝑃1. The point M is the projection onto the unitary hyperboloid 𝐻1. 

Remark that with hyperbolic geometry, as far as the saturation 

increase the energy of the light should be increased to leave the 

perceived intensity constant. Because the hyperboloid is inscribed 

into the cone, as far as we want to reach the envelop of the cone, 

the distance from the origin is increased meaning an increase of 

energy. 

The prediction given by the linear projective model for the 

demosaicing problem is in favor of the additive decomposition of 

the color vision space or at least an additive decomposition of 

spatio-chromatic vector space. But for the perception or sensation 

of colors the hyperbolic geometry is preferred. It is likely that 

these two representations of colors into their achromatic vs 

chromatic part are present in the brain and communicate each 

other for given us our sense of vision. 
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