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Abstract
For image quality assessment, the availability of diverse

databases is vital for the development and evaluation of image
quality metrics. Existing databases have played an important
role in promoting the understanding of various types of distor-
tion and in the evaluation of image quality metrics. However,
a comprehensive representation of optical aberrations and their
impact on image quality is lacking. This paper addresses this gap
by introducing a novel image quality database that focuses on
optical aberrations. We conduct a subjective experiment to cap-
ture human perceptual responses on a set of images with optical
aberrations. We then test the performance of selected objective
image quality metrics to assess these aberrations. This approach
not only ensures the relevance of our database to real-world sce-
narios but also contributes to ensuring the performance of the se-
lected image quality metrics. The database is available for down-
load at https: // www. ntnu. edu/ colourlab/ software .

Introduction
The measurement and assessment of an image’s perceived

quality is known as Image Quality Assessment (IQA). It is an
essential part of most everyday applications such as multime-
dia, computer vision, and image processing tasks. To ensure that
photos are technically appropriate in terms of quality for their ap-
plications, evaluating image quality is vital [1]. The two ways to
evaluate image quality are subjective and objective assessments.
The subjective assessment of image quality uses the subjective
judgment of human observers to evaluate the quality of images.
Objective assessments use algorithms and computational tech-
niques to measure image quality.

Objective assessment, with so-called Image Quality Met-
rics (IQMs), requires evaluation against ground-truth data to en-
sure the metric’s performance and consistency. Most IQMs aim
to predict perceived image quality, and their performance is de-
termined by the agreement with perceived quality ratings using,
for example, correlation measures. There is a wide range of
databases created with the intention of evaluating IQMs, such as
Kadid-10K [2], TID2008 [3], TID2013 [4], SEID [5], LIVE [6],
CID:IQ [7], CID:GD [8], and CID image demosaicing [9]. These
databases have been crucial for benchmarking IQMs, however,
they mostly contain similar distortions such as JPEG compres-
sion, blur, and noise. By analyzing these databases we have iden-
tified a gap in the distortions, namely optical aberrations. Optical
aberrations are present in all imaging systems in varying degrees
of intensity, and are therefore relevant in the context of IQA.

With the goal of evaluating the performance of IQMs on im-
ages with optical aberrations, in this paper, we introduce a new
image quality database called “Colourlab Image Database: Op-
tical Aberrations (CID: OA)”. To the best of our knowledge, de-
focus, astigmatism, and spherical aberrations have not been in-
corporated in existing IQA databases. The utilization of these
aberrations contributes to a more comprehensive understanding
of image quality and the creation of IQMs.1

1Contrary to image quality literature, we refer to the simulated im-

This paper is organized as follows: the methodology fol-
lowed to simulate the aberrant images is presented in “Method-
ology: Optical aberrations”, details regarding the assessment
of the simulated database, by subjects and the evaluations of
IQMs, are presented in “Methodology: Subjective Experiment”
and “Methodology: Objective Metrics” respectively. The results
of the two assessments and discussion are presented in “Results
and discussion”. In the final section, we conclude the paper.

Methodology
The work consists of different parts, first, we will introduce

the aberration types and how these have been simulated, followed
by the subjective experimental setup to evaluate the quality of the
aberrant images, and lastly, the IQMs used and how we assess
their performance on the aberrant images.

Optical aberrations
The core of an imaging tool is its optical system. The role of

the optical system is to focus and optimise the light distribution
onto the sensor for maximum information recording from the ob-
ject. For a perfect optical system, light passes in perfectly linear
“wave-fronts” and is focused on the sensor [10, 11]. However,
a perfect optical system does not exist and real optical systems
do not function in this manner. Optical elements of the system
(such as lenses, mirrors, and/or apertures) introduce wavefront
distortions. These wavefront distortions are responsible for what
is described as optical aberrations. These optical aberrations lead
to the dispersion of light rays instead of focusing them onto the
sensor, which results in a lower image quality output (blurry or
size-distorted image). There are multiple aberration categories,
each depending on the type of wavefront distortion introduced by
the optical system. Also, aberrations can be: achromatic (does
not depend on the wavelength) and chromatic (depends on the
wavelength). Aberrations can be visualised through the Point
Spread Function (PSF).

The resulting image (I) captured by an optical system is the
convolution of the object to capture (O) and the PSF of the optical
system. Equation 1 shows how this image is formed:

I(x,y) = O(x,y)⊛PSF(x,y) (1)

Therefore, knowing the PSF can be very useful to determine
the captured image quality. Also, the shape of the PSF allows
the identification of the aberrations in play in the optical system
and their intensity. Knowing this, aberrations can be classified
into different categories following the shapes of PSFs produced
at the output of the optical system. These different categories
of aberrations are referred to using Zernike polynomials. These
polynomials relate the PSF shape and intensity to physical quan-
tities proper to the optical system, mainly the radial distance of

ages as aberrant images instead of distorted. This is done to avoid con-
fusion between the two different meanings of the term “Distortion” in
image quality and optical engineering, where distortion is a type of opti-
cal aberration.
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the lens and the azimuthal angle of incoming light rays onto the
optical system.

Hence, optical aberrations are always present in real optical
systems. Consequently, it would be interesting to simulate their
effects on captured images and see the output of these aberrant
optical systems. There are a multitude of aberrations that can be
considered. However, in this paper, we implemented three achro-
matic aberrations. These aberrations are all characterized by a
blurry image output. The simulated aberrations are presented be-
low:

Defocus: A defocused system is a system where the incom-
ing light rays are focused close to, but not on the focal plane.
This is usually due to a miscalculation of the focal distance, or a
slight misplacement of the optical elements (lenses, mirrors) or
the sensor.

Astigmatism: An astigmatic optical system is one where the
sagittal and tangential axes of the lens have different focus points
i.e. the lens has two focal planes, a sagittal and a tangential. This
is a more complex situation than the defocus case and requires
optical correction and optimization of the optical system.

Spherical aberration: Spherical aberrations occur in opti-
cal systems containing un-optimized spherical elements such as
spherical lenses and mirrors. It is caused by a difference in re-
fraction (or reflection in the case of mirrors) power between light
rays coming from the lens’s extremities and rays passing through
the center of the lens. This difference in refraction causes each
light ray to focus on different points from one another instead of
focusing all on the focal plane.

ISETcam, an open-source MATLAB toolbox developed by
the Stanford Center for Image Systems Engineering [9], was used
for the simulation. We simulate these aberrations by generating,
using ISETcam, aberrant PSF profiles that get convolved with
the reference images, resulting in aberrant images. We simulate
the PSF profiles and their intensity by first selecting the Zernike
polynomial proper to each aberration type we want to implement,
and then setting the polynomial’s value to the wanted intensity.

We used 23 reference images from the CID:IQ database [7]
because they cover a wide range of characteristics, mainly
colourfulness and spatial information. Then we applied the aber-
rations on each reference image at four levels: defocus (levels
0.5, 1, 1.5, and 2), astigmatism (levels 0.5, 1, 1.5, and 2), and
spherical aberration (levels 0.2, 0.4, 0.6, and 0.9). Aberration
levels were chosen in such a way as to allow observers to per-
ceive visual differences between the aberrant images. We have
12 aberrant images per reference image, therefore overall, the
created database contains 299 images (276 aberrant images and
23 reference images). All images are in PNG format with a size
of 800× 800 pixels. An illustration of the simulation process is
presented in Figure 1.

Subjective Experiment
After generating the aberrant images, we conducted a sub-

jective categorical judgment experiment in a controlled environ-
ment to evaluate the quality of the images. We calibrated the
evaluation room and screen to achieve a standard viewing space
for all of the observers which was done in the following way:

1. The room light was dimmed. We used a Luxmeter to mea-
sure the illuminance in the experiment room. We placed
it near the keyboard of the computer where the experiment
was taking place.

2. An Eizo CG279X monitor (resolution: 2560 x 1440, pixel
density: 109 ppi) was calibrated to sRGB viewing standard
(Brightness: 80 cd/m, Temperature: D65, Gamma: 2.2,

ColourGamut: sRGB).
3. A fixed viewing distance from the screen is set to 58 cm.

We used a headrest to make sure that the distance is stable
throughout the experiment and across all experiments (for
all of the observers).

4. We held the observers in the environment for two minutes
before starting the experiment to allow the observer’s vision
to adapt to the room lighting.

Figure 1. An illustration summarizing the aberration simulation process.

The PSFs are generated in ISETcam and then convolved with the reference

image to obtain the aberrant images

The experiment was carried out by 15 observers (40% fe-
male, 60% male, average age 30 years) on the QuickEval on-
line platform [12]. The instructions given to the observers are
as follows: “Please rate the overall technical quality of the im-
ages. The scale is from 1 to 5, where 1 is ‘Very Low Quality’
and 5 is ‘Very High Quality’ ”. Before the start of each experi-
ment, we ensured that each observer had 20/20 visual acuity us-
ing a Snellen chart. We also tested the observers for colour de-
ficiency via Ishihara Test, even though colour deficiency would
not affect the results because the focus in the aberrant images
was mainly on structural changes rather than chromatic changes.
Therefore, observers passed the following two tests before enter-
ing the experiment room: (a) reading from 3 meters distance the
“Sloan Letters In LogMAR SIZES” (b) reading the HRR pseu-
doisochromatic plate. The subjective ratings were processed to
obtain Mean Opinion Scores (MOS).

Objective Metrics
We tested the database on 19 state-of-the-art IQMs. The

IQMs are Structural Similarity (SSIM) [13], Multiscale Struc-
tural Similarity (MSSIM) [14], Peak-Signal-to-Noise Ratio
(PSNR), Mean Squared Error (MSE) [15], Blind Image Qual-
ity Assessment through Anisotropy (BIQAA) [16], BLUR Met-
ric [17], HUE angle [18], Spatial Hue Angle Metric (SHAMEII)
[19], Adaptive Bilateral Filter (ABF) [20], Local Phase Coher-
ence Sharpness Index (Lpc-si) [21], Cumulative Probability of
Blur Detection (CPBD) [22], COLORPSNRHVMA [23], Fea-
ture SIMiliarity Index (FSIM) [24], EntropyDiff [25], Just No-
ticeable Blur Metric (JNBM) [22], Most Apparent Distortion
(MAD) [26], Spatial-CIELAB (S-CIELAB) [27], Total Variation
of Difference (TVD) [28], and Visual Information Fidelity (VIF)
[29]. These IQM provide a good selection in terms of measuring
image quality in the spatial and frequency domains.

The performance of the IQMs was assessed using the most
common performance criteria which are, Spearman Rank-Order
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Correlation Coefficient (SROCC), Pearson Linear Correlation
Coefficient (PLCC), and Kendall Rank Correlation Coefficient
(KROCC). These are shown with a 95% confidence interval. In
addition, we have calculated Root-Mean-Squared-Error and out-
lier ratio [30].

Results and discussion
Results of our experiment are found in Figures 2, 3, and 4.

Analysis of the subjective scores
From Figure 2, we can see that the subjective results are co-

herent: reference images have the highest opinion scores overall
with an average score of 4.6 out of 5, and MOS decreases when
the level of aberration increases.

Also, there is a clear preference shown by observers for
some aberrations over others. Vertical astigmatism aberrant im-
ages are rated higher than other aberrations for the same aber-
ration level, followed by defocus and lastly spherical aberration.
This may be explained by the fact that, although the output of the
three aberrations is characterized by blur, vertically astigmatic
images are blurry mostly following the x and y axis, whereas de-
focused and spherically aberrant are blurry throughout the pic-
ture. This indicates that observers were able to differentiate be-
tween the aberration types and have a clear preference for one
type over others.

We also analyzed the inter-rater reliability using Fleiss
Kappa for multiple observers [31]. The analysis shows that for all
images the observers have a fair agreement with a Fleiss Kappa
of 0.28. Investigation of the Fleiss Kappa for each of the 23 con-
tents (reference images and their corresponding aberrant images)
shows that all Kappa values are between 0.22 and 0.33, mean-
ing that the agreement for all contents are fair. For all tests the
p-values are close to 0, so the observed agreement is not acciden-
tal.

Analysis of the objective scores
We analysed the performance of the state-of-the-art IQMs

using the aforementioned correlation measures. Figure 3 shows
the performance of the tested IQMs on our database. We ob-
serve that the Lpc-si metric has the highest overall correlation.
For Lpc-si, the SROCC, PLCC, and KROCC values are 86%,
87%, and 68% respectively. We also observe that there are sev-
eral IQMs that perform quite well (correlation coefficient higher
than 80%), such as FSIM and MS-SSIM. On the other hand, there
is a group of IQMs that perform quite poorly (correlation coeffi-
cient lower than 30%), such as TVD, S-CIELAB, and ABF. We
also analysed the performance of Lpc-si for each of the aberra-
tions, and the SROCC for each of the aberrations ranges from
0.835 to 0.845 while the overall SROCC is 0.862. This indicates
that Lpc-si performs similarly for each of the aberrations.

First, when comparing IQMs, we notice a disparity between
different correlation coefficients. For example, MS-SSIM shows
a 20% difference between the SROCC and PLCC values, which
indicates that MS-SSIM has a non-linear behaviour. On the con-
trary, Lpc-si shows similar PLCC and SROCC values (87% and
86% respectively), and its point distribution is highly linear.

Our analysis also reveals that some IQMs, such as
SHAMEII, ABF, and TVD, are impacted by the content of the
images and that they can perform well for some images while
having difficulty with other images. These IQMs seem to have
problems with scale differences between images, which has been
previously reported for other metrics in [28].

Although not shown in this paper because of page limita-

tion, the analysis of the RMSE shows similar information about
the performance of each IQM. Similarly to what was observed
in Figure 3, the separation in two groups of IQMs is also vis-
ible. However, according to our experiments with RMSE, the
IQM with the lowest RMSE is FSIM and not the Lpc-si, and the
highest RMSE value is that of the MSE and not that of TVD.

Figure 4 shows the outlier ratio of the evaluated IQMs. The
outlier ratio is defined as the percentage of the number of pre-
dictions outside the interval of ±2 times the standard error of the
MOS. LPC-Si has the lowest outlier ratio, but on average many
of the IQMs have a high outlier ratio, indicating a low prediction
consistency. Overall, there is a lack of consistency in terms of
correlation, linearity, and outlier ratio among all the tested met-
rics and there is no perfect metric that succeeds in accurately
predicting the subjective scores. This shows that the dataset is
challenging for IQMs, which contributes to a more detailed eval-
uation of IQMs.

By examining the results of the IQMs, we see that the
best-performing IQMs are structural difference-based, while the
worst-performing metrics are colour-difference-based. This dis-
tinction in the performance of different IQMs can be explained
by the fact that the aberrations applied are characterized by the
blur they add to the images, although each aberration blurs the
images differently. When applied, blur affects the structure of
the images, but does not necessarily modify colour components.
Knowing this, we can see why the structural difference-based
IQMs perform the best on our database. Also, this explains why
the Lpc-si metric has the highest correlation coefficient, since it
is used specifically for sharpness and blur characterization.

However, this does not mean that the Lpc-si performance
can be generalized to all optical aberrations because other types
of aberrations are not characterized by uniform blur, or by blur at
all. Also, aberrations can be both “achromatic” and “chromatic”.
It may be the case that structural difference-based IQMs perform
better for achromatic aberrations, while colour-difference-based
metrics perform better for chromatic aberrations, but this needs
to be further evaluated.

Also, in a real optical system, these two types of aberra-
tions are present simultaneously. So, we cannot completely ig-
nore one type and only treat the other. Therefore, concluding
that structural-difference-based IQMs are better suited for aber-
rant image quality assessment becomes even less convincing.

Conclusion
Databases for the evaluation of image quality metrics have

many types of distortions applied, but none, to our knowledge,
has implemented optical aberrations. Therefore, we sought to fill
the gap in the literature and create a new database with optical
aberrations for evaluating the performance of image quality met-
rics. We successfully simulated defocus, vertical astigmatism,
and spherical aberrations on a set of images with four differ-
ent levels each, using an open-source code on MATLAB called
ISETcam. This was achieved by producing aberrant PSFs and
applying a convolution of them with reference images to simulate
aberrant images. After simulating the aberrant images, we mea-
sured the subject’s opinion on quality, through a psychometric
experiment. We tested the performance of IQMS on the created
images. In the subjective experiments, observers preferred astig-
matic images over defocused and spherically aberrant images.
Objectively, the Lpc-si IQM had the highest PLCC correlation
coefficient which was 87%. The database is available for down-
load at https://www.ntnu.edu/colourlab/software.

Future research could build upon this work by simulating
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Figure 2. Illustration of the subjective data in the form of MOS box-plots for each aberration type - level. Box-plots illustrate the quartile distribution of each

category, along with their averages and outliers.
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more optical aberration types, such as field curvature, distortion,
etc. combined with using optical simulation software.
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